ترغب بنشر مسار تعليمي؟ اضغط هنا

Condensed Mathematics: The internal Hom of condensed sets and condensed abelian groups and a prismatic construction of the real numbers

92   0   0.0 ( 0 )
 نشر من قبل Rodrigo Marlasca Aparicio
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an overview of the basic definitions of condensed categories, as well as the internal Hom of condensed abelian groups. We give a construction for the internal Hom of condensed sets and apply it to obtain a new proof of a theorem of Clausen and Scholze. Finally, we give a detailed account of a construction of the real numbers from discrete spaces, which is an intermediate step of a theorem by Clausen and Scholze.



قيم البحث

اقرأ أيضاً

179 - J. Beltran , C. Landim 2008
We propose a definition o meta-stability and obtain sufficient conditions for a sequence of Markov processes on finite state spaces to be meta-stable. In the reversible case, these conditions reduce to estimates of the capacity and the measure of cer tain meta-stable sets. We prove that a class of condensed zero-range processes with asymptotically decreasing jump rates is meta-stable.
When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usuall y employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the radial fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition.
Our understanding of various states of matter usually relies on the assumption of thermodynamic equilibrium. However, the transitions between different phases of matter can be strongly affected by non-equilibrium phenomena. Here we demonstrate and ex plain an example of non-equilibrium stalling of a continuous, second-order phase transition. We create a superheated atomic Bose gas, in which a Bose-Einstein condensate (BEC) persists above the equilibrium critical temperature, $T_c$, if its coupling to the surrounding thermal bath is reduced by tuning interatomic interactions. For vanishing interactions the BEC persists in the superheated regime for a minute. However, if strong interactions are suddenly turned on, it rapidly boils away. Our observations can be understood within a two-fluid picture, treating the condensed and thermal components of the gas as separate equilibrium systems with a tuneable inter-component coupling. We experimentally reconstruct a non-equilibrium phase diagram of our gas, and theoretically reproduce its main features.
We show that a correct formulation of the cold collision frequency shift for two photon spectroscopy of Bose-condensed and cold non-Bose-condensed hydrogen is consistent with experimental data. Our treatment includes transport and inhomogeneity into the theory of a non-condensed gas, which causes substantial changes in the cold collision frequency shift for the ordinary thermal gas, as a result of the very high frequency (3.9kHz) of transverse trap mode. For the condensed gas, we find substantial corrections arise from the inclusion of quasiparticles, whose number is very large because of the very low frequency (10.2Hz) of the longitudinal trap mode. These two effects together account for the apparent absence of a factor of two between the two possibilities. Our treatment considers only the Doppler-free measurements, but could be extended to Doppler-sensitive measurements. For Bose-condensed hydrogen, we predict a characteristic foot extending into higher detunings than can arise from the condensate alone, as a result of a correct treatment of the statistics of thermal quasiparticles.
110 - Frank Wilczek 2016
Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here Ill supply some broad, unifying context, both conceptual and historical, for the abundance of res ults reported at the Nobel Symposium on New Forms of Matter, Topological Insulators and Superconductors. Since they distill some most basic ideas in their simplest forms, these concluding remarks might also serve, for non-specialists, as an introduction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا