ﻻ يوجد ملخص باللغة العربية
When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the radial fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition.
We construct analytic (3+1)-dimensional inhomogeneous and topologically non-trivial pion systems using chiral perturbation theory. We discuss the effect of isospin asymmetry with vanishing electromagnetic interactions as well as some particular confi
It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes
We study neutrino emission from direct Urca processes in pion condensed quark matter. In compact stars with high baryon density, the emission is dominated by the gapless modes of the pion condensation which leads to an enhanced emissivity. While for
We introduce a local machine-learning method for predicting the electron densities of periodic systems. The framework is based on a numerical, atom-centred auxiliary basis, which enables an accurate expansion of the all-electron density in a form sui
The order parameter and its variations in space and time in many different states in condensed matter physics at low temperatures are described by the complex function $Psi({bf r}, t)$. These states include superfluids, superconductors, and a subclas