ﻻ يوجد ملخص باللغة العربية
We argue that Anton Zeilingers foundational conceptual principle for quantum mechanics according to which an elementary system carries one bit of information is an idealistic principle, which should be replaced by a realistic principle of contextuality. Specific properties of quantum systems are a consequence of impossibility to speak about them without reference to the tools of their observation/identification and, consequently, context in which these tools are applied.
We discuss the role that intuitive theories of physics play in the interpretation of quantum mechanics. We compare and contrast naive physics with quantum mechanics and argue that quantum mechanics is not just hard to understand but that it is diffic
The quantum Liouville equation, which describes the phase space dynamics of a quantum system of fermions, is analyzed from statistical point of view as a particular example of the Kramers-Moyal expansion. Quantum mechanics is extended to the relativi
Relational Quantum Mechanics (RQM) is a non-standard interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve t
Two-photon states produce enough symmetry needed for Diracs construction of the two-oscillator system which produces the Lie algebra for the O(3,2) space-time symmetry. This O(3,2) group can be contracted to the inhomogeneous Lorentz group which, acc
We present a derivation of the third postulate of Relational Quantum Mechanics (RQM) from the properties of conditional probabilities.The first two RQM postulates are based on the information that can be extracted from interaction of different system