ﻻ يوجد ملخص باللغة العربية
How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. Here we present a new approach using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. The model can go from motor babbling to reaching arbitrary targets in less than 10 minutes. However, because there is no cerebellum the movements are ataxic. As emergent properties, neural populations in motor cortex show directional tuning and oscillatory dynamics, and the spinal cord creates convergent force fields that add linearly. The model is extensible and may eventually lead to complete motor control simulation.
Among the various key networks in the human body, the nervous system occupies central importance. The debilitating effects of spinal cord injuries (SCI) impact a significant number of people throughout the world, and to date, there is no satisfactory
Axonal growth and guidance at the ventral floor plate is here followed $textit{in vivo}$ in real time at high resolution by light-sheet microscopy along several hundred micrometers of the zebrafish spinal cord. The recordings show the strikingly ster
The role of the motor cortex in perceptual and cognitive functions is highly controversial. Here, we investigated the hypothesis that the motor cortex can be instrumental for translating foreign language vocabulary. Participants were trained on forei
Evidence suggests that disruptions of the posteromedial cortex (PMC) and posteromedial corticothalamic connectivity contribute to disorders of consciousness (DOCs). While most previous studies treated the PMC as a whole, this structure is functionall
Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remain