ترغب بنشر مسار تعليمي؟ اضغط هنا

Propensity score regression for causal inference with treatment heterogeneity

225   0   0.0 ( 0 )
 نشر من قبل Peng Wu
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding how treatment effects vary on individual characteristics is critical in the contexts of personalized medicine, personalized advertising and policy design. When the characteristics are of practical interest are only a subset of full covariate, non-parametric estimation is often desirable; but few methods are available due to the computational difficult. Existing non-parametric methods such as the inverse probability weighting methods have limitations that hinder their use in many practical settings where the values of propensity scores are close to 0 or 1. We propose the propensity score regression (PSR) that allows the non-parametric estimation of the heterogeneous treatment effects in a wide context. PSR includes two non-parametric regressions in turn, where it first regresses on the propensity scores together with the characteristics of interest, to obtain an intermediate estimate; and then, regress the intermediate estimates on the characteristics of interest only. By including propensity scores as regressors in the non-parametric manner, PSR is capable of substantially easing the computational difficulty while remain (locally) insensitive to any value of propensity scores. We present several appealing properties of PSR, including the consistency and asymptotical normality, and in particular the existence of an explicit variance estimator, from which the analytical behaviour of PSR and its precision can be assessed. Simulation studies indicate that PSR outperform existing methods in varying settings with extreme values of propensity scores. We apply our method to the national 2009 flu survey (NHFS) data to investigate the effects of seasonal influenza vaccination and having paid sick leave across different age groups.



قيم البحث

اقرأ أيضاً

153 - Kangjie Zhou , Jinzhu Jia 2021
In this paper, we propose a propensity score adapted variable selection procedure to select covariates for inclusion in propensity score models, in order to eliminate confounding bias and improve statistical efficiency in observational studies. Our v ariable selection approach is specially designed for causal inference, it only requires the propensity scores to be $sqrt{n}$-consistently estimated through a parametric model and need not correct specification of potential outcome models. By using estimated propensity scores as inverse probability treatment weights in performing an adaptive lasso on the outcome, it successfully excludes instrumental variables, and includes confounders and outcome predictors. We show its oracle properties under the linear association conditions. We also perform some numerical simulations to illustrate our propensity score adapted covariate selection procedure and evaluate its performance under model misspecification. Comparison to other covariate selection methods is made using artificial data as well, through which we find that it is more powerful in excluding instrumental variables and spurious covariates.
Selective inference (post-selection inference) is a methodology that has attracted much attention in recent years in the fields of statistics and machine learning. Naive inference based on data that are also used for model selection tends to show an overestimation, and so the selective inference conditions the event that the model was selected. In this paper, we develop selective inference in propensity score analysis with a semiparametric approach, which has become a standard tool in causal inference. Specifically, for the most basic causal inference model in which the causal effect can be written as a linear sum of confounding variables, we conduct Lasso-type variable selection by adding an $ell_1$ penalty term to the loss function that gives a semiparametric estimator. Confidence intervals are then given for the coefficients of the selected confounding variables, conditional on the event of variable selection, with asymptotic guarantees. An important property of this method is that it does not require modeling of nonparametric regression functions for the outcome variables, as is usually the case with semiparametric propensity score analysis.
Randomized experimentation (also known as A/B testing or bucket testing) is widely used in the internet industry to measure the metric impact obtained by different treatment variants. A/B tests identify the treatment variant showing the best performa nce, which then becomes the chosen or selected treatment for the entire population. However, the effect of a given treatment can differ across experimental units and a personalized approach for treatment selection can greatly improve upon the usual global selection strategy. In this work, we develop a framework for personalization through (i) estimation of heterogeneous treatment effect at either a cohort or member-level, followed by (ii) selection of optimal treatment variants for cohorts (or members) obtained through (deterministic or stochastic) constrained optimization. We perform a two-fold evaluation of our proposed methods. First, a simulation analysis is conducted to study the effect of personalized treatment selection under carefully controlled settings. This simulation illustrates the differences between the proposed methods and the suitability of each with increasing uncertainty. We also demonstrate the effectiveness of the method through a real-life example related to serving notifications at Linkedin. The solution significantly outperformed both heuristic solutions and the global treatment selection baseline leading to a sizable win on top-line metrics like member visits.
142 - Shuo Sun , Erica E. M. Moodie , 2021
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, r ather than (possibly high) quantiles. We define a general estimator of the population quantile treatment (or exposure) effects (QTE) -- the weighted QTE (WQTE) -- of which the population QTE is a special case, along with a general class of balancing weights incorporating the propensity score. Asymptotic properties of the proposed WQTE estimators are derived. We further propose and compare propensity score regression and two weighted methods based on these balancing weights to understand the causal effect of an exposure on quantiles, allowing for the exposure to be binary, discrete or continuous. Finite sample behavior of the three estimators is studied in simulation. The proposed methods are applied to data taken from the Bavarian Danube catchment area to estimate the 95% QTE of phosphorus on copper concentration in the river.
Most epidemiologic cohorts are composed of volunteers who do not represent the general population. To enable population inference from cohorts, we and others have proposed utilizing probability survey samples as external references to develop a prope nsity score (PS) for membership in the cohort versus survey. Herein we develop a unified framework for PS-based weighting (such as inverse PS weighting (IPSW)) and matching methods (such as kernel-weighting (KW) method). We identify a fundamental Strong Exchangeability Assumption (SEA) underlying existing PS-based matching methods whose failure invalidates inference even if the PS-model is correctly specified. We relax the SEA to a Weak Exchangeability Assumption (WEA) for the matching method. Also, we propose IPSW.S and KW.S methods that reduce the variance of PS-based estimators by scaling the survey weights used in the PS estimation. We prove consistency of the IPSW.S and KW.S estimators of population means and prevalences under WEA, and provide asymptotic variances and consistent variance estimators. In simulations, the KW.S and IPSW.S estimators had smallest MSE. In our data example, the original KW estimates had large bias, whereas the KW.S estimates had the smallest MSE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا