ترغب بنشر مسار تعليمي؟ اضغط هنا

Quadratic magnetoelectric effect during field cooling in sputter grown Cr$_2$O$_3$ films

68   0   0.0 ( 0 )
 نشر من قبل Muftah Al-Mahdawi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cr$_2$O$_3$ is the archetypal magnetoelectric (ME) material, which has a linear coupling between electric and magnetic polarizations. Quadratic ME effects are forbidden for the magnetic point group of Cr$_2$O$_3$, due to space-time inversion symmetry. In Cr$_2$O$_3$ films grown by sputtering, we find a signature of a quadratic ME effect that is not found in bulk single crystals. We use Raman spectroscopy and magetization measurements to deduce the removal of space-time symmetry, and corroborate the emergence of the quadratic ME effect. We propose that meta-stable site-selective trace dopants remove the space, time, and space-time inversion symmetries from the original magnetic point group of bulk Cr$_2$O$_3$. We include the quadratic ME effect in a model describing the switching process during ME field cooling, and estimate the effective quadratic susceptibility value. The quadratic magnetoelectric effect in a uniaxial antiferromagnet is promising for multifunctional antiferromagnetic and magnetoelectric devices that can incorporate optical, strain-induced, and multiferroic effects.



قيم البحث

اقرأ أيضاً

The anomalous Hall effect (AHE) is a non-linear Hall effect appearing in magnetic conductors, boosted by internal magnetism beyond what is expected from the ordinary Hall effect. With the recent discovery of the quantized version of the AHE, the quan tum anomalous Hall effect (QAHE), in Cr- or V-doped topological insulator (TI) (Sb,Bi)$_2$Te$_3$ thin films, the AHE in magnetic TIs has been attracting significant interest. However, one of the puzzles in this system has been that while Cr- or V-doped (Sb,Bi)$_2$Te$_3$ and V-doped Bi$_2$Se$_3$ exhibit AHE, Cr-doped Bi$_2$Se$_3$ has failed to exhibit even ferromagnetic AHE, the expected predecessor to the QAHE, though it is the first material predicted to exhibit the QAHE. Here, we have successfully implemented ferromagnetic AHE in Cr-doped Bi$_2$Se$_3$ thin films by utilizing a surface state engineering scheme. Surprisingly, the observed ferromagnetic AHE in the Cr-doped Bi$_2$Se$_3$ thin films exhibited only positive slope regardless of the carrier type. We show that this sign problem can be explained by the intrinsic Berry curvature of the system as calculated from a tight-binding model combined with a first-principles method.
We report the growth, structural and magnetic properties of the less studied Eu-oxide phase, Eu$_3$O$_4$, thin films grown on a Si/SiO$_2$ substrate and Si/SiO$_2$/graphene using molecular beam epitaxy. The X-ray diffraction scans show that highly-te xtured crystalline Eu$_3$O$_4$(001) films are grown on both substrates, whereas the film deposited on graphene has a better crystallinity than that grown on the Si/SiO$_2$ substrate. The SQUID measurements show that both films have a Curie temperature of about 5.5 K, with a magnetic moment of 0.0032 emu/g at 2 K. The mixed-valency of the Eu cations has been confirmed by the qualitative analysis of the depth-profile X-ray photoelectron spectroscopy measurements with the Eu$^{2+}$ : Eu$^{3+}$ ratio of 28 : 72. However, surprisingly, our films show no metamagnetic behaviour as reported for the bulk and powder form. Furthermore, the Raman spectroscopy scans show that the growth of the Eu$_3$O$_4$ thin films has no damaging effect on the underlayer graphene sheet. Therefore, the graphene layer is expected to retain its properties.
Magnetite epitaxial thin films have been prepared by pulsed laser deposition at 340 C on MgO and Si substrates. One key result is that the thin film properties are almost identical to the properties of bulk material. For 40 - 50 nm thick films, the s aturation magnetization and conductivity are respectively 453 emu/cm^3 and 225 1/(Ohm cm) at room temperature. The Verwey transition is at 117 K. The Hall effect indicates an electron concentration corresponding to 0.22 electrons per formula unit at room temperature. Normal and anomalous Hall effect both have a negative sign.
We report a comprehensive muon spin rotation ($mu$SR) study of the prototypical magnetoelectric antiferromagnet Cr$_2$O$_3$. We find the positively charged muon ($mu^+$) occupies several distinct interstitial sites, and displays a rich dynamic behavi or involving local hopping, thermally activated site transitions and the formation of a charge-neutral complex composed of a muon and an electron polaron. The discovery of such a complex has implications for the interpretation of $mu$SR spectra in a wide range of magnetic oxides, and opens a route to study the dopant characteristics of interstitial hydrogen impurities in such materials. We address implications arising from implanting a $mu^+$ into a linear magnetoelectric, and discuss the challenges of observing a local magnetoelectric effect generated by the charge of the muon.
118 - Alaska Subedi 2021
I use first principles calculations to investigate the thermal conductivity of $beta$-In$_2$O$_3$ and compare the results with that of $alpha$-Al$_2$O$_3$, $beta$-Ga$_2$O$_3$, and KTaO$_3$. The calculated thermal conductivity of $beta$-In$_2$O$_3$ ag rees well with the experimental data obtain recently, which found that the low-temperature thermal conductivity in this material can reach values above 1000 W/mK. I find that the calculated thermal conductivity of $beta$-Ga$_2$O$_3$ is larger than that of $beta$-In$_2$O$_3$ at all temperatures, which implies that $beta$-Ga$_2$O$_3$ should also exhibit high values of thermal conductivity at low temperatures. The thermal conductivity of KTaO$_3$ calculated ignoring the temperature-dependent phonon softening of low-frequency modes give high-temperature values similar that of $beta$-Ga$_2$O$_3$. However, the calculated thermal conductivity of KTaO$_3$ does not increase as steeply as that of the binary compounds at low temperatures, which results in KTaO$_3$ having the lowest low-temperature thermal conductivity despite having acoustic phonon velocities larger than that of $beta$-Ga$_2$O$_3$ and $beta$-In$_2$O$_3$. I attribute this to the fact that the acoustic phonon velocities at low frequencies in KTaO$_3$ is less uniformly distributed because its acoustic phonon branches are more dispersive compared to the binary oxides, which causes enhanced momentum loss even during the normal phonon-phonon scattering processes. I also calculate thermal diffusivity using the theoretically obtained thermal conductivity and heat capacity and find that all four materials exhibit the expected $T^{-1}$ behavior at high temperatures. Additionally, the calculated ratio of the average phonon scattering time to Planckian time is larger than the lower bound of 1 that has been observed empirically in numerous other materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا