ﻻ يوجد ملخص باللغة العربية
In the global landscape of neutrinoless double beta ($0 ubetabeta$) decay search, the use of semiconductor germanium detectors provides many advantages. The excellent energy resolution, the negligible intrinsic radioactive contamination, the possibility of enriching the crystals up to 88% in the $^{76}$Ge isotope as well as the high detection efficiency, are all key ingredients for highly sensitive $0 ubetabeta$ decay search. The MAJORANA and GERDA experiments successfully implemented the use of germanium (Ge) semiconductor detectors, reaching an energy resolution of $2.53 pm 0.08$ keV at the Q$_{betabeta}$ and an unprecedented low background level of $5.2 times 10^{-4}$ cts/(keV$cdot$kg$cdot$yr), respectively. In this paper, we will review the path of $0 ubetabeta$ decay search with Ge detectors from the original idea of E. Fiorini et al. in 1967, to the final recent results of the GERDA experiment setting a limit on the half-life of $^{76}$Ge $0 ubetabeta$ decay at $T_{1/2} > 1.8 times 10^{26}$ yr (90% C.L.). We will then present the LEGEND project designed to reach a sensitivity to the half-life up to $10^{28}$ yr and beyond, opening the way to the exploration of the normal ordering region.
The nEXO neutrinoless double beta decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in $^{136}$Xe. Progress in the detector design, paired with higher fidelity in i
The GERmanium Detector Array (GERDA) experiment located at the INFN Gran Sasso Laboratory (Italy), is looking for the neutrinoless double beta decay of Ge76, by using high-purity germanium detectors made from isotopically enriched material. The combi
The Gerda experiment designed to search for the neutrinoless double beta decay in 76Ge has successfully completed the first data collection. No signal excess is found, and a lower limit on the half life of the process is set, with T1/2 > 2.1x10^25 yr
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0$ ubetabeta$) of $^{100}$Mo with $sim$100 kg of $^{100}$Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and ligh
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to charge-current solar neutrino interactions with BB nuclei of $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$