ﻻ يوجد ملخص باللغة العربية
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to charge-current solar neutrino interactions with BB nuclei of $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$Te, $^{136}$Xe, and $^{150}$Nd are evaluated. They are shown to be significant for future high-sensitivity BB experiments that may search for Majorana neutrino masses in the inverted-hierarchy mass region. The impact of solar neutrino backgrounds and their reduction are discussed for future BB experiments.
The GERmanium Detector Array (GERDA) experiment located at the INFN Gran Sasso Laboratory (Italy), is looking for the neutrinoless double beta decay of Ge76, by using high-purity germanium detectors made from isotopically enriched material. The combi
The Gerda experiment designed to search for the neutrinoless double beta decay in 76Ge has successfully completed the first data collection. No signal excess is found, and a lower limit on the half life of the process is set, with T1/2 > 2.1x10^25 yr
The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta ($0 ubetabeta$) decay in $^{136}$Xe with a target half-life sensitivity of approximately $10^{28}$ years using $5times10^3$ kg of is
The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements e
Neutrinoless double-beta decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos ar