ترغب بنشر مسار تعليمي؟ اضغط هنا

Four-Dimensional Steady Gradient Ricci Solitons with $3$-Cylindrical Tangent Flows at Infinity

106   0   0.0 ( 0 )
 نشر من قبل Zilu Ma
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider $4$-dimensional steady soliton singularity models, i.e., complete steady gradient Ricci solitons that arise as the rescaled limit of a finite time singular solution of the Ricci flow on a closed $4$-manifold. In particular, we study the geometry at infinity of such Ricci solitons under the assumption that their tangent flow at infinity is the product of $mathbb{R}$ with a $3$-dimensional spherical space form. We also classify the tangent flows at infinity of $4$-dimensional steady soliton singularity models in general.

قيم البحث

اقرأ أيضاً

In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part o f the Weyl tensor is either Einstein, or a finite quotient of either the Gaussian shrinking soliton $Bbb{R}^4,$ or $Bbb{S}^{3}timesBbb{R}$, or $Bbb{S}^{2}timesBbb{R}^{2}.$ In addition, we provide some curvature estimates for four-dimensional complete gradient Ricci solitons assuming that its scalar curvature is suitable bounded by the potential function.
93 - Xu Cheng , Detang Zhou 2021
Let $(M, g, f)$ be a $4$-dimensional complete noncompact gradient shrinking Ricci soliton with the equation $Ric+ abla^2f=lambda g$, where $lambda$ is a positive real number. We prove that if $M$ has constant scalar curvature $S=2lambda$, it must be a quotient of $mathbb{S}^2times mathbb{R}^2$. Together with the known results, this implies that a $4$-dimensional complete gradient shrinking Ricci soliton has constant scalar curvature if and only if it is rigid, that is, it is either Einstein, or a finite quotient of Gaussian shrinking soliton $Bbb{R}^4$, $Bbb{S}^{2}timesBbb{R}^{2}$ or $Bbb{S}^{3}timesBbb{R}$.
344 - Huai-Dong Cao , Jiangtao Yu 2020
In this paper, we extend the work of Cao-Chen [9] on Bach-flat gradient Ricci solitons to classify $n$-dimensional ($nge 5$) complete $D$-flat gradient steady Ricci solitons. More precisely, we prove that any $n$-dimensional complete noncompact gradi ent steady Ricci soliton with vanishing $D$-tensor is either Ricci-flat, or isometric to the Bryant soliton. Furthermore, the proof extends to the shrinking case and the expanding case as well.
We study solutions to generalized Ricci flow on four-manifolds with a nilpotent, codimension $1$ symmetry. We show that all such flows are immortal, and satisfy type III curvature and diameter estimates. Using a new kind of monotone energy adapted to this setting, we show that blowdown limits lie in a canonical finite-dimensional family of solutions. The results are new for Ricci flow.
We use the theory of isoparametric functions to investigate gradient Ricci solitons with constant scalar curvature. We show rigidity of gradient Ricci solitons with constant scalar curvature under some conditions on the Ricci tensor, which are all sa tisfied if the manifold is curvature homogeneous. This leads to a complete description of four- and six-dimensional Kaehler gradient Ricci solitons with constant scalar curvature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا