ترغب بنشر مسار تعليمي؟ اضغط هنا

Balls and Walls: A Compact Unary Coding for Bosonic States

131   0   0.0 ( 0 )
 نشر من قبل Hatem Barghathi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a unary coding of bosonic occupation states based on the famous balls and walls counting for the number of configurations of $N$ indistinguishable particles on $L$ distinguishable sites. Each state is represented by an integer with a human readable bit string that has a compositional structure allowing for the efficient application of operators that locally modify the number of bosons. By exploiting translational and inversion symmetries, we identify a speedup factor of order $L$ over current methods when generating the basis states of bosonic lattice models. The unary coding is applied to a one-dimensional Bose-Hubbard Hamiltonian with up to $L=N=20$, and the time needed to generate the ground state block is reduced to a fraction of the diagonalization time. For the ground state symmetry resolved entanglement, we demonstrate that variational approaches restricting the local bosonic Hilbert space could result in an error that scales with system size.

قيم البحث

اقرأ أيضاً

We analyze the formation of squeezed states in a condensate of ultracold bosonic atoms confined by a double-well potential. The emphasis is set on the dynamical formation of such states from initially coherent many-body quantum states. Two cases are described: the squeezing formation in the evolution of the system around the stable point, and in the short time evolution in the vicinity of an unstable point. The latter is shown to produce highly squeezed states on very short times. On the basis of a semiclassical approximation to the Bose-Hubbard Hamiltonian, we are able to predict the amount of squeezing, its scaling with $N$ and the speed of coherent spin formation with simple analytical formulas which successfully describe the numerical Bose-Hubbard results. This new method of producing highly squeezed spin states in systems of ultracold atoms is compared to other standard methods in the literature.
Ultracold bosonic atoms trapped in a two-leg ladder pierced by a magnetic field provide a minimal and quasi-one-dimensional instance to study the interplay between orbital magnetism and interactions. Using time-dependent matrix-product-states simulat ions, we investigate the properties of the so-called Meissner and vortex phases which appear in such system, focusing on experimentally accessible observables. We discuss how to experimentally monitor the phase transition, and show that the response to a modulation of the density imbalance between the two legs of the ladder is qualitatively different in the two phases. We argue that this technique can be used as a tool for many-body spectroscopy, allowing to quantitatively measure the spin gap in the Meissner phase. We finally discuss its experimental implementation
Using near-exact numerical simulations we study the propagation of an impurity through a one-dimensional Bose lattice gas for varying bosonic interaction strengths and filling factors at zero temperature. The impurity is coupled to the Bose gas and c onfined to a separate tilted lattice. The precise nature of the transport of the impurity is specific to the excitation spectrum of the Bose gas which allows one to measure properties of the Bose gas non-destructively, in principle, by observing the impurity; here we focus on the spatial and momentum distributions of the impurity as well as its reduced density matrix. For instance we show it is possible to determine whether the Bose gas is commensurately filled as well as the bandwidth and gap in its excitation spectrum. Moreover, we show that the impurity acts as a witness to the cross-over of its environment from the weakly to the strongly interacting regime, i.e., from a superfluid to a Mott insulator or Tonks-Girardeau lattice gas and the effects on the impurity in both of these strongly-interacting regimes are clearly distinguishable. Finally, we find that the spatial coherence of the impurity is related to its propagation through the Bose gas, giving an experimentally controllable example of noise-enhanced quantum transport.
We demonstrate many-body multifractality of the Bose-Hubbard Hamiltonians ground state in Fock space, for arbitrary values of the interparticle interaction. Generalized fractal dimensions unambiguously signal, even for small system sizes, the emergen ce of a Mott insulator, that cannot, however, be naively identified with a localized phase in Fock space. We show that the scaling of the derivative of any generalized fractal dimension with respect to the interaction strength encodes the critical point of the superfluid to Mott insulator transition, and provides an efficient way to accurately estimate its position. We further establish that the transition can be quantitatively characterized by one single wavefunction amplitude from the exponentially large Fock space.
More than 30 years ago, Thouless introduced the concept of a topological charge pump that would enable the robust transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transpo rted charge was shown to be quantized and purely determined by the topology of the pump cycle, making it robust to perturbations. On a fundamental level, the quantized charge transport can be connected to a topological invariant, the Chern number, first introduced in the context of the integer quantum Hall effect. A Thouless quantum pump may therefore be regarded as a dynamical version of the integer quantum Hall effect. Here, we report on the realization of such a topological charge pump using ultracold bosonic atoms that form a Mott insulator in a dynamically controlled optical superlattice potential. By taking in-situ images of the atom cloud, we observe a quantized deflection per pump cycle. We reveal the genuine quantum nature of the pump by showing that, in contrast to ground state particles, a counterintuitive reversed deflection occurs when particles are prepared in the first excited band. Furthermore, we were able to directly demonstrate that the system undergoes a controlled topological phase transition in higher bands when tuning the superlattice parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا