ترغب بنشر مسار تعليمي؟ اضغط هنا

Impurity transport through a strongly interacting bosonic quantum gas

109   0   0.0 ( 0 )
 نشر من قبل Tomi Johnson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using near-exact numerical simulations we study the propagation of an impurity through a one-dimensional Bose lattice gas for varying bosonic interaction strengths and filling factors at zero temperature. The impurity is coupled to the Bose gas and confined to a separate tilted lattice. The precise nature of the transport of the impurity is specific to the excitation spectrum of the Bose gas which allows one to measure properties of the Bose gas non-destructively, in principle, by observing the impurity; here we focus on the spatial and momentum distributions of the impurity as well as its reduced density matrix. For instance we show it is possible to determine whether the Bose gas is commensurately filled as well as the bandwidth and gap in its excitation spectrum. Moreover, we show that the impurity acts as a witness to the cross-over of its environment from the weakly to the strongly interacting regime, i.e., from a superfluid to a Mott insulator or Tonks-Girardeau lattice gas and the effects on the impurity in both of these strongly-interacting regimes are clearly distinguishable. Finally, we find that the spatial coherence of the impurity is related to its propagation through the Bose gas, giving an experimentally controllable example of noise-enhanced quantum transport.

قيم البحث

اقرأ أيضاً

270 - Boyang Liu , Hui Zhai , 2016
In this work we study the particle conductance of a strongly interacting Fermi gas through a quantum point contact. With an atom-molecule two-channel model, we compute the contribution to particle conductance by both the fermionic atoms and the boson ic molecules using the Keldysh formalism. Focusing on the regime above the Fermi superfluid transition temperature, we find that the fermionic contribution to the conductance is reduced by interaction compared with the quantized value for the non-interacting case; while the bosonic contribution to the conductance exhibits a plateau with non-universal values that is larger than the quantized conductance. This feature is particularly profound at temperature close to the superfluid transition. We emphasize that the enhanced conductance arises because of the bosonic nature of closed channel molecules and the low-dimensionality of the quantum point contact.
136 - Sagarika Basak , Han Pu 2021
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within sa me site and neighboring sites leads to substantial change in the previously observed spin phases revealing fascinating remarkable spin correlations. In the presence of strong interactions it gives rise to unconventional effective ordering of the spins leading to unprecedented spin phases: site-dependent $ztextsf{-}x$ spin configuration with tunable (by hopping parameter) proclivity of spin alignment along $z$. Exact analysis and Variational Monte Carlo (VMC) along with stochastic minimization on Entangled Plaquette State (EPS) bestow a unique and enhanced perspective into the system beyond the scope of mean-field treatment. The physics of complex intra-component tunneling and inter-component coupling and filling factor greater than unity are discussed.
In dissipative quantum systems, strong symmetries can lead to the existence of conservation laws and multiple steady states. The investigation of such strong symmetries and their consequences on the dynamics of the dissipative systems is still in its infancy. In this work we investigate a strong symmetry for bosonic atoms coupled to an optical cavity, an experimentally relevant system, using adiabatic elimination techniques and numerically exact matrix product state methods. We show the existence of multiple steady states for ideal bosons coupled to the cavity. We find that the introduction of a weak breaking of the strong symmetry by a small interaction term leads to a direct transition from multiple steady states to a unique steady state. We point out the phenomenon of dissipative freezing, the breaking of the conservation law at the level of individual realizations in the presence of the strong symmetry. For a weak breaking of the strong symmetry we see that the behavior of the individual trajectories still shows some signs of this dissipative freezing before it fades out for a larger symmetry breaking terms.
The dynamics of impurity atoms introduced into bosonic gases in an optical lattice have generated a lot of recent interest, both in theory and experiment. We investigate to what extent measurements on either the impurity species or the majority speci es in these systems are affected by their interspecies entanglement. This arises naturally in the dynamics and plays an important role when we measure only one species. We explore the corresponding effects in strongly interacting regimes, using a combination of few-particle analytical calculations and Density Matrix Renormalisation group methods in one dimension. We identify how the resulting effects on impurities can be used to probe the many-body states of the majority species, and separately ask how to enter regimes where this entanglement is small, so that the impurities can be used as probes that do not significantly affect the majority species. The results are accessible in current experiments, and provide important considerations for the measurement of complex systems with using few probe atoms.
We study the properties of an impurity immersed in a weakly interacting Bose gas, i.e., of a Bose polaron. In the perturbatively-tractable of limit weak impurity-boson interactions many of its properties are known to depend only on the scattering len gth. Here we demonstrate that for strong (unitary) impurity-boson interactions all static quasiproperties of a Bose polaron in a dilute Bose gas, such as its energy, its residue, its Tans contact and the number of bosons trapped nearby the impurity, depend on the impurity-boson potential via a single parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا