ترغب بنشر مسار تعليمي؟ اضغط هنا

AnnIE: An Annotation Platform for Constructing Complete Open Information Extraction Benchmark

80   0   0.0 ( 0 )
 نشر من قبل Kiril Gashteovski
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Open Information Extraction (OIE) is the task of extracting facts from sentences in the form of relations and their corresponding arguments in schema-free manner. Intrinsic performance of OIE systems is difficult to measure due to the incompleteness of existing OIE benchmarks: the ground truth extractions do not group all acceptable surface realizations of the same fact that can be extracted from a sentence. To measure performance of OIE systems more realistically, it is necessary to manually annotate complete facts (i.e., clusters of all acceptable surface realizations of the same fact) from input sentences. We propose AnnIE: an interactive annotation platform that facilitates such challenging annotation tasks and supports creation of complete fact-oriented OIE evaluation benchmarks. AnnIE is modular and flexible in order to support different use case scenarios (i.e., benchmarks covering different types of facts). We use AnnIE to build two complete OIE benchmarks: one with verb-mediated facts and another with facts encompassing named entities. Finally, we evaluate several OIE systems on our complete benchmarks created with AnnIE. Our results suggest that existing incomplete benchmarks are overly lenient, and that OIE systems are not as robust as previously reported. We publicly release AnnIE under non-restrictive license.



قيم البحث

اقرأ أيضاً

Open Information Extraction (OIE) is the task of the unsupervised creation of structured information from text. OIE is often used as a starting point for a number of downstream tasks including knowledge base construction, relation extraction, and que stion answering. While OIE methods are targeted at being domain independent, they have been evaluated primarily on newspaper, encyclopedic or general web text. In this article, we evaluate the performance of OIE on scientific texts originating from 10 different disciplines. To do so, we use two state-of-the-art OIE systems applying a crowd-sourcing approach. We find that OIE systems perform significantly worse on scientific text than encyclopedic text. We also provide an error analysis and suggest areas of work to reduce errors. Our corpus of sentences and judgments are made available.
Recent advances in the area of legal information systems have led to a variety of applications that promise support in processing and accessing legal documents. Unfortunately, these applications have various limitations, e.g., regarding scope or exte nsibility. Furthermore, we do not observe a trend towards open access in digital libraries in the legal domain as we observe in other domains, e.g., economics of computer science. To improve open access in the legal domain, we present our approach for an open source platform to transparently process and access Legal Open Data. This enables the sustainable development of legal applications by offering a single technology stack. Moreover, the approach facilitates the development and deployment of new technologies. As proof of concept, we implemented six technologies and generated metadata for more than 250,000 German laws and court decisions. Thus, we can provide users of our platform not only access to legal documents, but also the contained information.
One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora. The diversity of open domain corpora and the variety of natural language expressions further exacerbate this problem. In this paper, we propose a syntactic and semantic-driven learning approach, which can learn neural open IE models without any human-labelled data by leveraging syntactic and semantic knowledge as noisier, higher-level supervisions. Specifically, we first employ syntactic patterns as data labelling functions and pretrain a base model using the generated labels. Then we propose a syntactic and semantic-driven reinforcement learning algorithm, which can effectively generalize the base model to open situations with high accuracy. Experimental results show that our approach significantly outperforms the supervised counterparts, and can even achieve competitive performance to supervised state-of-the-art (SoA) model
Modern NLP systems require high-quality annotated data. In specialized domains, expert annotations may be prohibitively expensive. An alternative is to rely on crowdsourcing to reduce costs at the risk of introducing noise. In this paper we demonstra te that directly modeling instance difficulty can be used to improve model performance, and to route instances to appropriate annotators. Our difficulty prediction model combines two learned representations: a `universal encoder trained on out-of-domain data, and a task-specific encoder. Experiments on a complex biomedical information extraction task using expert and lay annotators show that: (i) simply excluding from the training data instances predicted to be difficult yields a small boost in performance; (ii) using difficulty scores to weight instances during training provides further, consistent gains; (iii) assigning instances predicted to be difficult to domain experts is an effective strategy for task routing. Our experiments confirm the expectation that for specialized tasks expert annotations are higher quality than crowd labels, and hence preferable to obtain if practical. Moreover, augmenting small amounts of expert data with a larger set of lay annotations leads to further improvements in model performance.
Computation-intensive pretrained models have been taking the lead of many natural language processing benchmarks such as GLUE. However, energy efficiency in the process of model training and inference becomes a critical bottleneck. We introduce HULK, a multi-task energy efficiency benchmarking platform for responsible natural language processing. With HULK, we compare pretrained models energy efficiency from the perspectives of time and cost. Baseline benchmarking results are provided for further analysis. The fine-tuning efficiency of different pretrained models can differ a lot among different tasks and fewer parameter number does not necessarily imply better efficiency. We analyzed such phenomenon and demonstrate the method of comparing the multi-task efficiency of pretrained models. Our platform is available at https://sites.engineering.ucsb.edu/~xiyou/hulk/.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا