ﻻ يوجد ملخص باللغة العربية
Modern NLP systems require high-quality annotated data. In specialized domains, expert annotations may be prohibitively expensive. An alternative is to rely on crowdsourcing to reduce costs at the risk of introducing noise. In this paper we demonstrate that directly modeling instance difficulty can be used to improve model performance, and to route instances to appropriate annotators. Our difficulty prediction model combines two learned representations: a `universal encoder trained on out-of-domain data, and a task-specific encoder. Experiments on a complex biomedical information extraction task using expert and lay annotators show that: (i) simply excluding from the training data instances predicted to be difficult yields a small boost in performance; (ii) using difficulty scores to weight instances during training provides further, consistent gains; (iii) assigning instances predicted to be difficult to domain experts is an effective strategy for task routing. Our experiments confirm the expectation that for specialized tasks expert annotations are higher quality than crowd labels, and hence preferable to obtain if practical. Moreover, augmenting small amounts of expert data with a larger set of lay annotations leads to further improvements in model performance.
Few-shot relation extraction (FSRE) focuses on recognizing novel relations by learning with merely a handful of annotated instances. Meta-learning has been widely adopted for such a task, which trains on randomly generated few-shot tasks to learn gen
Open Information Extraction (OIE) is the task of extracting facts from sentences in the form of relations and their corresponding arguments in schema-free manner. Intrinsic performance of OIE systems is difficult to measure due to the incompleteness
Clinical case reports are written descriptions of the unique aspects of a particular clinical case, playing an essential role in sharing clinical experiences about atypical disease phenotypes and new therapies. However, to our knowledge, there has be
Relation Extraction (RE) is one of the fundamental tasks in Information Extraction and Natural Language Processing. Dependency trees have been shown to be a very useful source of information for this task. The current deep learning models for relatio
Introducing biomedical informatics (BMI) students to natural language processing (NLP) requires balancing technical depth with practical know-how to address application-focused needs. We developed a set of three activities introducing introductory BM