ﻻ يوجد ملخص باللغة العربية
Code understanding is an increasingly important application of Artificial Intelligence. A fundamental aspect of understanding code is understanding text about code, e.g., documentation and forum discussions. Pre-trained language models (e.g., BERT) are a popular approach for various NLP tasks, and there are now a variety of benchmarks, such as GLUE, to help improve the development of such models for natural language understanding. However, little is known about how well such models work on textual artifacts about code, and we are unaware of any systematic set of downstream tasks for such an evaluation. In this paper, we derive a set of benchmarks (BLANCA - Benchmarks for LANguage models on Coding Artifacts) that assess code understanding based on tasks such as predicting the best answer to a question in a forum post, finding related forum posts, or predicting classes related in a hierarchy from class documentation. We evaluate the performance of current state-of-the-art language models on these tasks and show that there is a significant improvement on each task from fine tuning. We also show that multi-task training over BLANCA tasks helps build better language models for code understanding.
In this work, we explore joint energy-based model (EBM) training during the finetuning of pretrained text encoders (e.g., Roberta) for natural language understanding (NLU) tasks. Our experiments show that EBM training can help the model reach a bette
Few-shot learning (FSL) is one of the key future steps in machine learning and has raised a lot of attention. However, in contrast to the rapid development in other domains, such as Computer Vision, the progress of FSL in Nature Language Processing (
Contextualized entity representations learned by state-of-the-art transformer-based language models (TLMs) like BERT, GPT, T5, etc., leverage the attention mechanism to learn the data context from training data corpus. However, these models do not us
This paper presents the design of the machine learning architecture that underlies the Alexa Skills Kit (ASK) a large scale Spoken Language Understanding (SLU) Software Development Kit (SDK) that enables developers to extend the capabilities of Amazo
Lack of training data presents a grand challenge to scaling out spoken language understanding (SLU) to low-resource languages. Although various data augmentation approaches have been proposed to synthesize training data in low-resource target languag