ﻻ يوجد ملخص باللغة العربية
In this article, theory-based analytical methodologies of astrophysics employed in the modern era are suitably operated alongside a test research-grade telescope to image and determine the orbit of a near-earth asteroid from original observations, measurements, and calculations. Subsequently, its intrinsic orbital path has been calculated including the chance it would likely impact Earth in the time ahead. More so specifically, this case-study incorporates the most effective, feasible, and novel Gausss Method in order to maneuver the orbital plane components of a planetesimal, further elaborating and extending our probes on a selected near-earth asteroid (namely the 12538-1998 OH) through the observational data acquired over a six week period. Utilizing the CCD (Charge Coupled Device) snapshots captured, we simulate and calculate the orbit of our asteroid as outlined in quite detailed explanations. The uncertainties and deviations from the expected values are derived to reach a judgement whether our empirical findings are truly reliable and representative measurements by partaking a statistical analysis based systematic approach. Concluding the study by narrating what could have caused such discrepancy of findings in the first place, if any, measures are put forward that could be undertaken to improve the test-case for future investigations. Following the calculation of orbital elements and their uncertainties using Monte Carlo analysis, simulations were executed with various sample celestial bodies to derive a plausible prediction regarding the fate of Asteroid 1998 OH. Finally, the astrometric and photometric data, after their precise verification, were officially submitted to the Minor Planet Center: an organization hosted by the Center for Astrophysics, Harvard and Smithsonian and funded by NASA, for keeping track of the asteroids potential trajectories.
The Canada-France-Hawaii Legacy Survey (CFHTLS) comprising about 25 000 MegaCam images was data mined to search for serendipitous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 143 asteroids (10
Asteroids can be eclipsed by other bodies in the Solar System, but no direct observation of an asteroid eclipse has been reported to date. We describe a statistical method to predict an eclipse for an asteroid based on the analysis of the orbital ele
The ESO/MPG WFI and the INT WFC wide field archives comprising 330,000 images were mined to search for serendipitous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 152 asteroids (44 PHAs and 108
Gaia is an astrometric mission that will be launched in spring 2013. There are many scientific outcomes from this mission and as far as our Solar System is concerned, the satellite will be able to map thousands of main belt asteroids (MBAs) and near-
The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 par