ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of intermittency on turbulent transport in magnetized plasmas

127   0   0.0 ( 0 )
 نشر من قبل Ligia Pomarjanschi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze how the turbulent transport of $mathbf{E}times mathbf{B}$ type in magnetically confined plasmas is affected by intermittent features of turbulence. The latter are captured by the non-Gaussian distribution $P(phi)$ of the turbulent electric potential $phi$. Our analysis is performed at an analytical level and confirmed numerically using two statistical approaches. We have found that the diffusion is inhibited linearly by intermittency, mainly via the kurtosis of the distribution $P(phi)$. The associated susceptibility for this linear process is shown to be dependent on the poloidal velocity $V_p$ and on the correlation time $tau_c$ with a maxima at the time-of-flight $tau_{fl}$. Intermittency does not affect the Kubo number scaling in the strong regime.



قيم البحث

اقرأ أيضاً

232 - M. Barnes , F. I. Parra , 2012
Scaling laws for the transport and heating of trace heavy ions in low-frequency, magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion temperature for very weakly collisional plasmas and for partially-ionized heavy ions in strongly rotating plasmas.
The friction force on a test particle traveling through a plasma that is both strongly coupled and strongly magnetized is studied using molecular dynamics simulations. In addition to the usual stopping power component aligned antiparallel to the velo city, a transverse component that is perpendicular to both the velocity and Lorentz force is observed. This component, which was recently discovered in weakly coupled plasmas, is found to increase in both absolute and relative magnitude in the strongly coupled regime. Strong coupling is also observed to induce a third component of the friction force in the direction of the Lorentz force. These first-principles simulations reveal novel physics associated with collisions in strongly coupled, strongly magnetized, plasmas that are not predicted by existing kinetic theories. The effect is expected to influence macroscopic transport in a number of laboratory experiments and astrophysical plasmas.
Nonlinear gyrokinetic simulations have been conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal E x B shear value for plasma confinement. Local maxima in the momentum fluxes are also observed, allowing for the possibility of bifurcations in the E x B shear. The sensitive dependence of heat flux on temperature gradient is relaxed for large flow shear values, with the critical temperature gradient increasing at lower flow shear values. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.
This work addresses linear transport in turbulent media, with emphasis on neutral particle (atoms, molecules) transport in magnetized fusion plasmas. A stochastic model for turbulent plasmas, based upon a multivariate Gamma distribution, is presented . The geometry is a 2D slab and turbulence is assumed to be statistically homogeneous. The average neutral density and ionization source, which are the quantities relevant for integrated simulations and diagnostic applications, are calculated analytically in the scattering free case. The boundary conditions and the ratio of the turbulence correlation length to the neutral mean free path are identified as the main control parameters in the problem. The non trivial relationship between the average neutral density and the ionization source is investigated. Monte Carlo calculations including scattering are then presented, and the main trends obtained in the scattering free case are shown to be conserved.
A study of turbulent impurity transport by means of quasilinear and nonlinear gyrokinetic simulations is presented for Wendelstein 7-X (W7-X). The calculations have been carried out with the recently developed gyrokinetic code stella. Different impur ity species are considered in the presence of various types of background instabilities: ITG, TEM and ETG modes for the quasilinear part of the work; ITG and TEM for the nonlinear results. While the quasilinear approach allows one to draw qualitative conclusions about the sign or relative importance of the various contributions to the flux, the nonlinear simulations quantitatively determine the size of the turbulent flux and check the extent to which the quasilinear conclusions hold. Although the bulk of the nonlinear simulations are performed at trace impurity concentration, nonlinear simulations are also carried out at realistic effective charge values, in order to know to what degree the conclusions based on the simulations performed for trace impurities can be extrapolated to realistic impurity concentrations. The presented results conclude that the turbulent radial impurity transport in W7-X is mainly dominated by ordinary diffusion, which is close to that measured during the recent W7-X experimental campaigns. It is also confirmed that thermo-diffusion adds a weak inward flux contribution and that, in the absence of impurity temperature and density gradients, ITG- and TEM-driven turbulence push the impurities inwards and outwards, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا