ﻻ يوجد ملخص باللغة العربية
Despite the absence of an apparent triangular pattern in the crystal structure, we observe unusually well pronounced 1/3 magnetization plateaus in the quasi one-dimensional Ising spin chain compound CoGeO$_3$ which belongs to the class of pyroxene minerals. We succeeded in uncovering the detailed microscopic spin structure of the 1/3 magnetization plateau phase by means of neutron diffraction. We observed changes of the initial antiferromagnetic zero-field spin structure that are resembling a regular formation of antiferromagnetic domain wall boundaries, resulting in a kind of modulated magnetic structure with 1/3-integer propagation vector. The net ferromagnetic moment emerges at these domain walls whereas two third of all antiferromagnetic chain alignments can be still preserved. We propose a microscopic model on the basis of an anisotropic frustrated square lattice to explain the observations.
We report on the synthesis and physical properties of cm-sized CoGeO$_3$ single crystals grown in a high pressure mirror furnace at pressures of 80~bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly ani
Magnetic susceptibility and the magnetization process have been measured in green polycrystal. In this compound, the magnetic manganese ion exists as Mn$^{5+}$ in a tetrahedral environment, and thus the magnetic interaction can be described by an S=1
I study a spin system consisting of strongly coupled dimers which are in turn weakly coupled in a plane by zigzag interactions. The model can be viewed as the strong-coupling limit of a two-dimensional zigzag chain structure typical, e.g., for the $(
We discuss the ground-state degeneracy of spin-$1/2$ kagome-lattice quantum antiferromagnets on magnetization plateaus by employing two complementary methods: the adiabatic flux insertion in closed boundary conditions and a t Hooft anomaly argument o
Magnetization plateaus are some of the most striking manifestations of frustration in low-dimensional spin systems. We present numerical studies of magnetization plateaus in the fascinating spin-1/2 skewed ladder system obtained by alternately fusing