ترغب بنشر مسار تعليمي؟ اضغط هنا

A Characterization of Individualization-Refinement Trees

125   0   0.0 ( 0 )
 نشر من قبل Markus Anders
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Individualization-Refinement (IR) algorithms form the standard method and currently the only practical method for symmetry computations of graphs and combinatorial objects in general. Through backtracking, on each graph an IR-algorithm implicitly creates an IR-tree whose order is the determining factor of the running time of the algorithm. We give a precise and constructive characterization which trees are IR-trees. This characterization is applicable both when the tree is regarded as an uncolored object but also when regarded as a colored object where vertex colors stem from a node invariant. We also provide a construction that given a tree produces a corresponding graph whenever possible. This provides a constructive proof that our necessary conditions are also sufficient for the characterization.

قيم البحث

اقرأ أيضاً

376 - N Alon , F.V. Fomin , G. Gutin 2008
The {sc Directed Maximum Leaf Out-Branching} problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves i n out-branchings. We show that - every strongly connected $n$-vertex digraph $D$ with minimum in-degree at least 3 has an out-branching with at least $(n/4)^{1/3}-1$ leaves; - if a strongly connected digraph $D$ does not contain an out-branching with $k$ leaves, then the pathwidth of its underlying graph UG($D$) is $O(klog k)$. Moreover, if the digraph is acyclic, the pathwidth is at most $4k$. The last result implies that it can be decided in time $2^{O(klog^2 k)}cdot n^{O(1)}$ whether a strongly connected digraph on $n$ vertices has an out-branching with at least $k$ leaves. On acyclic digraphs the running time of our algorithm is $2^{O(klog k)}cdot n^{O(1)}$.
The problem of finding a common refinement of a set of rooted trees with common leaf set $L$ appears naturally in mathematical phylogenetics whenever poorly resolved information on the same taxa from different sources is to be reconciled. This consti tutes a special case of the well-studied supertree problem, where the leaf sets of the input trees may differ. Algorithms that solve the rooted tree compatibility problem are of course applicable to this special case. However, they require sophisticated auxiliary data structures and have a running time of at least $O(k|L|log^2(k|L|))$ for $k$ input trees. Here, we show that the problem can be solved in $O(k|L|)$ time using a simple bottom-up algorithm called LinCR. An implementation of LinCR in Python is freely available at https://github.com/david-schaller/tralda.
Let $mathcal{O}_n$ be the set of ordered labeled trees on ${0,...,n}$. A maximal decreasing subtree of an ordered labeled tree is defined by the maximal ordered subtree from the root with all edges being decreasing. In this paper, we study a new refi nement $mathcal{O}_{n,k}$ of $mathcal{O}_n$, which is the set of ordered labeled trees whose maximal decreasing subtree has $k+1$ vertices.
In the present paper, we propose a refinement for the notion of quantum Markov states (QMS) on trees. A structure theorem for QMS on general trees is proved. We notice that any restriction of QMS in the sense of Ref. cite{AccFid03} is not necessarily to be a QMS. It turns out that localized QMS has the mentioned property which is called textit{sub-Markov states}, this allows us to characterize translation invariant QMS on regular trees.
PQ-trees and PC-trees are data structures that represent sets of linear and circular orders, respectively, subject to constraints that specific subsets of elements have to be consecutive. While equivalent to each other, PC-trees are conceptually much simpler than PQ-trees; updating a PC-trees so that a set of elements becomes consecutive requires only a single operation, whereas PQ-trees use an update procedure that is described in terms of nine transformation templates that have to be recursively matched and applied. Despite these theoretical advantages, to date no practical PC-tree implementation is available. This might be due to the original description by Hsu and McConnell in some places only sketching the details of the implementation. In this paper, we describe two alternative implementations of PC-trees. For the first one, we follow the approach by Hsu and McConnell, filling in the necessary details and also proposing improvements on the original algorithm. For the second one, we use a different technique for efficiently representing the tree using a Union-Find data structure. In an extensive experimental evaluation we compare our implementations to a variety of other implementations of PQ-trees that are available on the web as part of academic and other software libraries. Our results show that both PC-tree implementations beat their closest fully correct competitor, the PQ-tree implementation from the OGDF library, by a factor of 2 to 4, showing that PC-trees are not only conceptually simpler but also fast in practice. Moreover, we find the Union-Find-based implementation, while having a slightly worse asymptotic runtime, to be twice as fast as the one based on the description by Hsu and McConnell.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا