ﻻ يوجد ملخص باللغة العربية
The problem of finding a common refinement of a set of rooted trees with common leaf set $L$ appears naturally in mathematical phylogenetics whenever poorly resolved information on the same taxa from different sources is to be reconciled. This constitutes a special case of the well-studied supertree problem, where the leaf sets of the input trees may differ. Algorithms that solve the rooted tree compatibility problem are of course applicable to this special case. However, they require sophisticated auxiliary data structures and have a running time of at least $O(k|L|log^2(k|L|))$ for $k$ input trees. Here, we show that the problem can be solved in $O(k|L|)$ time using a simple bottom-up algorithm called LinCR. An implementation of LinCR in Python is freely available at https://github.com/david-schaller/tralda.
We consider the classic problem of computing the Longest Common Subsequence (LCS) of two strings of length $n$. While a simple quadratic algorithm has been known for the problem for more than 40 years, no faster algorithm has been found despite an ex
We propose a weighted common subgraph (WCS) matching algorithm to find the most similar subgraphs in two labeled weighted graphs. WCS matching, as a natural generalization of the equal-sized graph matching or subgraph matching, finds wide application
In the Directed Feedback Vertex Set (DFVS) problem, the input is a directed graph $D$ on $n$ vertices and $m$ edges, and an integer $k$. The objective is to determine whether there exists a set of at most $k$ vertices intersecting every directed cycl
Finding the common subsequences of $L$ multiple strings has many applications in the area of bioinformatics, computational linguistics, and information retrieval. A well-known result states that finding a Longest Common Subsequence (LCS) for $L$ stri
Given a graph $G=(V,E)$ and an integer $k ge 1$, a $k$-hop dominating set $D$ of $G$ is a subset of $V$, such that, for every vertex $v in V$, there exists a node $u in D$ whose hop-distance from $v$ is at most $k$. A $k$-hop dominating set of minimu