ﻻ يوجد ملخص باللغة العربية
We propose a novel problem within end-to-end learning of task-oriented dialogs (TOD), in which the dialog system mimics a troubleshooting agent who helps a user by diagnosing their problem (e.g., car not starting). Such dialogs are grounded in domain-specific flowcharts, which the agent is supposed to follow during the conversation. Our task exposes novel technical challenges for neural TOD, such as grounding an utterance to the flowchart without explicit annotation, referring to additional manual pages when user asks a clarification question, and ability to follow unseen flowcharts at test time. We release a dataset (FloDial) consisting of 2,738 dialogs grounded on 12 different troubleshooting flowcharts. We also design a neural model, FloNet, which uses a retrieval-augmented generation architecture to train the dialog agent. Our experiments find that FloNet can do zero-shot transfer to unseen flowcharts, and sets a strong baseline for future research.
End-to-End task-oriented dialogue systems generate responses based on dialog history and an accompanying knowledge base (KB). Inferring those KB entities that are most relevant for an utterance is crucial for response generation. Existing state of th
Current task-oriented dialog (TOD) systems mostly manage structured knowledge (e.g. databases and tables) to guide the goal-oriented conversations. However, they fall short of handling dialogs which also involve unstructured knowledge (e.g. reviews a
Despite the increasing research interest in end-to-end learning systems for speech emotion recognition, conventional systems either suffer from the overfitting due in part to the limited training data, or do not explicitly consider the different cont
This paper presents our task-oriented dialog system UBAR which models task-oriented dialogs on a dialog session level. Specifically, UBAR is acquired by fine-tuning the large pre-trained unidirectional language model GPT-2 on the sequence of the enti
Recent studies try to build task-oriented dialogue systems in an end-to-end manner and the existing works make great progress on this task. However, there is still an issue need to be further considered, i.e., how to effectively represent the knowled