ﻻ يوجد ملخص باللغة العربية
Fourier ptychographic microscopy is a computational imaging technique that provides quantitative phase information and high resolution over a large field-of-view. Although the technique presents numerous advantages over conventional microscopy, model mismatch due to unknown optical aberrations can significantly limit reconstruction quality. Many attempts to address this issue rely on embedding pupil recovery into the reconstruction algorithm. In this paper we demonstrate the limitations of a purely algorithmic approach and evaluate the merits of implementing a simple, dedicated calibration procedure. In simulations, we find that for a target sample reconstruction error, we can image without any aberration corrections up to a maximum aberration magnitude of $lambda$/40. When we use algorithmic self-calibration, we can increase the aberration magnitude up to $lambda$/10, and with our in situ speckle calibration technique, this working range is extended further to a maximum aberration magnitude of $lambda$/3. Hence, one can trade-off complexity for accuracy by using a separate calibration process, which is particularly useful for larger aberrations.
Super-resolution imaging with advanced optical systems has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as rough wall corners or bio
Raman microscopy is a valuable tool for detecting physical and chemical properties of a sample material. When probing nanomaterials or nanocomposites the spatial resolution of Raman microscopy is not always adequate as it is limited by the optical di
This work presents a new super-resolution imaging approach by using subwavelength hole resonances. We employ a subwavelength structure in which an array of tiny holes are etched in a metallic slab with the neighboring distance $ell$ that is smaller t
Extending super-resolution imaging techniques to objects hidden in strongly scattering media potentially revolutionize the technical analysis for much broader categories of samples, such as biological tissues. The main challenge is the medias inhomog
It has been shown that negative refraction makes a perfect lens. However, with little loss, the imaging functionality will be strongly compromised. Later on, it was proved that positive refraction from Maxwells fish-eye lens can also makes a perfect