ﻻ يوجد ملخص باللغة العربية
Highly sensitive photodetectors with single photon level detection is one of the key components to a range of emerging technologies, in particular the ever-growing field of optical communication, remote sensing, and quantum computing. Currently, most of the single-photon detection technologies require external biasing at high voltages and/or cooling to low temperatures, posing great limitations for wider applications. Here, we demonstrate InP nanowire array photodetectors that can achieve single-photon level light detection at room temperature without an external bias. We use top-down etched, heavily doped p-type InP nanowires and n-type AZO/ZnO carrier selective contact to form a radial p-n junction with a built-in electric field exceeding 3x10^5 V/cm at 0 V. The device exhibits broadband light sensitivity and can distinguish a single photon per pulse from the dark noise at 0 V, enabled by its design to realize near-ideal broadband absorption, extremely low dark current, and highly efficient charge carrier separation. Meanwhile, the bandwidth of the device reaches above 600 MHz with a timing jitter of 538 ps. The proposed device design provides a new pathway towards low-cost, high-sensitivity, self-powered photodetectors for numerous future applications.
A single photon source with high repeatability and low uncertainties is the key element for few-photon metrology based on photon numbers. While low photon number fluctuations and high repeatability are important figures for qualification as a standar
We investigate the nonlinear optical response of a commercial extended-wavelength In$_{0.81}$Ga$_{0.19}$As photodetector. Degenerate two-photon absorption in the mid-infrared range is observed at room temperature using a quantum cascade laser emittin
On-chip photon sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing in both classical and quantum regimes. However, currently-exploited integrated OAM sources have been primarily limited to th
Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photo
Superconducting nanowire single photon detectors (SNSPDs) have advanced various frontier scientific and technological fields such as quantum key distribution and deep space communications. However, limited by available cooling technology, all past ex