ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Extraction of Word Embedding from Q-contexts

93   0   0.0 ( 0 )
 نشر من قبل Junsheng Kong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The notion of word embedding plays a fundamental role in natural language processing (NLP). However, pre-training word embedding for very large-scale vocabulary is computationally challenging for most existing methods. In this work, we show that with merely a small fraction of contexts (Q-contexts)which are typical in the whole corpus (and their mutual information with words), one can construct high-quality word embedding with negligible errors. Mutual information between contexts and words can be encoded canonically as a sampling state, thus, Q-contexts can be fast constructed. Furthermore, we present an efficient and effective WEQ method, which is capable of extracting word embedding directly from these typical contexts. In practical scenarios, our algorithm runs 11$sim$13 times faster than well-established methods. By comparing with well-known methods such as matrix factorization, word2vec, GloVeand fasttext, we demonstrate that our method achieves comparable performance on a variety of downstream NLP tasks, and in the meanwhile maintains run-time and resource advantages over all these baselines.

قيم البحث

اقرأ أيضاً

128 - Lingfei Wu , Ian E.H. Yen , Kun Xu 2018
While the celebrated Word2Vec technique yields semantically rich representations for individual words, there has been relatively less success in extending to generate unsupervised sentences or documents embeddings. Recent work has demonstrated that a distance measure between documents called emph{Word Movers Distance} (WMD) that aligns semantically similar words, yields unprecedented KNN classification accuracy. However, WMD is expensive to compute, and it is hard to extend its use beyond a KNN classifier. In this paper, we propose the emph{Word Movers Embedding } (WME), a novel approach to building an unsupervised document (sentence) embedding from pre-trained word embeddings. In our experiments on 9 benchmark text classification datasets and 22 textual similarity tasks, the proposed technique consistently matches or outperforms state-of-the-art techniques, with significantly higher accuracy on problems of short length.
Word embeddings are reliable feature representations of words used to obtain high quality results for various NLP applications. Uncontextualized word embeddings are used in many NLP tasks today, especially in resource-limited settings where high memo ry capacity and GPUs are not available. Given the historical success of word embeddings in NLP, we propose a retrospective on some of the most well-known word embedding algorithms. In this work, we deconstruct Word2vec, GloVe, and others, into a common form, unveiling some of the common conditions that seem to be required for making performant word embeddings. We believe that the theoretical findings in this paper can provide a basis for more informed development of future models.
Dependency context-based word embedding jointly learns the representations of word and dependency context, and has been proved effective in aspect term extraction. In this paper, we design the positional dependency-based word embedding (PoD) which co nsiders both dependency context and positional context for aspect term extraction. Specifically, the positional context is modeled via relative position encoding. Besides, we enhance the dependency context by integrating more lexical information (e.g., POS tags) along dependency paths. Experiments on SemEval 2014/2015/2016 datasets show that our approach outperforms other embedding methods in aspect term extraction.
111 - Masataro Asai , Zilu Tang 2020
We propose an unsupervised neural model for learning a discrete embedding of words. Unlike existing discrete embeddings, our binary embedding supports vector arithmetic operations similar to continuous embeddings. Our embedding represents each word a s a set of propositional statements describing a transition rule in classical/STRIPS planning formalism. This makes the embedding directly compatible with symbolic, state of the art classical planning solvers.
Neural machine translation has achieved remarkable empirical performance over standard benchmark datasets, yet recent evidence suggests that the models can still fail easily dealing with substandard inputs such as misspelled words, To overcome this i ssue, we introduce a new encoding heuristic of the input symbols for character-level NLP models: it encodes the shape of each character through the images depicting the letters when printed. We name this new strategy visual embedding and it is expected to improve the robustness of NLP models because humans also process the corpus visually through printed letters, instead of machinery one-hot vectors. Empirically, our method improves models robustness against substandard inputs, even in the test scenario where the models are tested with the noises that are beyond what is available during the training phase.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا