ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear Independent Dual System (NIDS) for Discretization-independent Surrogate Modeling over Complex Geometries

144   0   0.0 ( 0 )
 نشر من قبل James Duvall
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerical solutions of partial differential equations (PDEs) require expensive simulations, limiting their application in design optimization routines, model-based control, or solution of large-scale inverse problems. Existing Convolutional Neural Network-based frameworks for surrogate modeling require lossy pixelization and data-preprocessing, which is not suitable for realistic engineering applications. Therefore, we propose non-linear independent dual system (NIDS), which is a deep learning surrogate model for discretization-independent, continuous representation of PDE solutions, and can be used for prediction over domains with complex, variable geometries and mesh topologies. NIDS leverages implicit neural representations to develop a non-linear mapping between problem parameters and spatial coordinates to state predictions by combining evaluations of a case-wise parameter network and a point-wise spatial network in a linear output layer. The input features of the spatial network include physical coordinates augmented by a minimum distance function evaluation to implicitly encode the problem geometry. The form of the overall output layer induces a dual system, where each term in the map is non-linear and independent. Further, we propose a minimum distance function-driven weighted sum of NIDS models using a shared parameter network to enforce boundary conditions by construction under certain restrictions. The framework is applied to predict solutions around complex, parametrically-defined geometries on non-parametrically-defined meshes with solutions obtained many orders of magnitude faster than the full order models. Test cases include a vehicle aerodynamics problem with complex geometry and data scarcity, enabled by a training method in which more cases are gradually added as training progresses.

قيم البحث

اقرأ أيضاً

We consider the stochastic contextual bandit problem under the high dimensional linear model. We focus on the case where the action space is finite and random, with each action associated with a randomly generated contextual covariate. This setting f inds essential applications such as personalized recommendation, online advertisement, and personalized medicine. However, it is very challenging as we need to balance exploration and exploitation. We propose doubly growing epochs and estimating the parameter using the best subset selection method, which is easy to implement in practice. This approach achieves $ tilde{mathcal{O}}(ssqrt{T})$ regret with high probability, which is nearly independent in the ``ambient regression model dimension $d$. We further attain a sharper $tilde{mathcal{O}}(sqrt{sT})$ regret by using the textsc{SupLinUCB} framework and match the minimax lower bound of low-dimensional linear stochastic bandit problems. Finally, we conduct extensive numerical experiments to demonstrate the applicability and robustness of our algorithms empirically.
Reliable measures of statistical dependence could be useful tools for learning independent features and performing tasks like source separation using Independent Component Analysis (ICA). Unfortunately, many of such measures, like the mutual informat ion, are hard to estimate and optimize directly. We propose to learn independent features with adversarial objectives which optimize such measures implicitly. These objectives compare samples from the joint distribution and the product of the marginals without the need to compute any probability densities. We also propose two methods for obtaining samples from the product of the marginals using either a simple resampling trick or a separate parametric distribution. Our experiments show that this strategy can easily be applied to different types of model architectures and solve both linear and non-linear ICA problems.
Dual-tree algorithms are a widely used class of branch-and-bound algorithms. Unfortunately, developing dual-tree algorithms for use with different trees and problems is often complex and burdensome. We introduce a four-part logical split: the tree, t he traversal, the point-to-point base case, and the pruning rule. We provide a meta-algorithm which allows development of dual-tree algorithms in a tree-independent manner and easy extension to entirely new types of trees. Representations are provided for five common algorithms; for k-nearest neighbor search, this leads to a novel, tighter pruning bound. The meta-algorithm also allows straightforward extensions to massively parallel settings.
149 - K. L. Zhang , H. C. Wu , L. Jin 2019
Non-Hermiticity can vary the topology of system, induce topological phase transition, and even invalidate the conventional bulk-boundary correspondence. Here, we show the introducing of non-Hermiticity without affecting the topological properties of the original chiral symmetric Hermitian systems. Conventional bulk-boundary correspondence holds, topological phase transition and the (non)existence of edge states are unchanged even though the energy bands are inseparable due to non-Hermitian phase transition. Chern number for energy bands of the generalized non-Hermitian system in two dimension is proved to be unchanged and favorably coincides with the simulated topological charge pumping. Our findings provide insights into the interplay between non-Hermiticity and topology. Topological phase transition independent of non-Hermitian phase transition is a unique feature that beneficial for future applications of non-Hermitian topological materials.
We present the point-coupling Hamiltonian as a model for frequency-independent linear optical devices acting on propagating optical modes described as a continua of harmonic oscillators. We formally integrate the Heisenberg equations of motion for th is Hamiltonian, calculate its quantum scattering matrix, and show that an application of the quantum scattering matrix on an input state is equivalent to applying the inverse of classical scattering matrix on the annihilation operators describing the optical modes. We show how to construct the point-coupling Hamiltonian corresponding to a general linear optical device described by a classical scattering matrix, and provide examples of Hamiltonians for some commonly used linear optical devices. Finally, in order to demonstrate the practical utility of the point-coupling Hamiltonian, we use it to rigorously formulate a matrix-product-state based simulation for time-delayed feedback systems wherein the feedback is provided by a linear optical device described by a scattering matrix as opposed to a hard boundary condition (e.g. a mirror with less than unity reflectivity).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا