ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the role of binarity in the origin of the bimodal rotational velocity distribution in stellar clusters

75   0   0.0 ( 0 )
 نشر من قبل Sebastian Kamann
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many young and intermediate age massive stellar clusters host bimodal distributions in the rotation rates of their stellar populations, with a dominant peak of rapidly rotating stars and a secondary peak of slow rotators. The origin of this bimodal rotational distribution is currently debated and two main theories have been put forward in the literature. The first is that all/most stars are born as rapid rotators and that interacting binaries brake a fraction of the stars, resulting in two populations. The second is that the rotational distribution is a reflection of the early evolution of pre-main sequence stars, in particular, whether they are able to retain or lose their protoplanetary discs during the first few Myr. Here, we test the binary channel by exploiting multi-epoch VLT/MUSE observations of NGC 1850, a 100Myr massive cluster in the LMC, to search for differences in the binary fractions of the slow and fast rotating populations. If binarity is the cause of the rotational bimodality, we would expect that the slowly rotating population should have a much larger binary fraction than the rapid rotators. However, in our data we detect similar fractions of binary stars in the slow and rapidly rotating populations (5.9+/-1.1% and 4.5+/-0.6%, respectively).Hence, we conclude that binarity is not a dominant mechanism in the formation of the observed bimodal rotational distributions.



قيم البحث

اقرأ أيضاً

We address the origin of the observed bimodal rotational distribution of stars in massive young and intermediate age stellar clusters. This bimodality is seen as split main sequences at young ages and also has been recently directly observed in the $ Vsini$ distribution of stars within massive young and intermediate age clusters. Previous models have invoked binary interactions as the origin of this bimodality, although these models are unable to reproduce all of the observational constraints on the problem. Here we suggest that such a bimodal rotational distribution is set up early within a clusters life, i.e., within the first few Myr. Observations show that the period distribution of low-mass ($la 2 M_odot$) pre-main sequence (PMS) stars is bimodal in many young open clusters and we present a series of models to show that if such a bimodality exists for stars on the PMS that it is expected to manifest as a bimodal rotational velocity (at fixed mass/luminosity) on the main sequence for stars with masses in excess of $sim1.5$~msun. Such a bimodal period distribution of PMS stars may be caused by whether stars have lost (rapid rotators) or been able to retain (slow rotators) their circumstellar discs throughout their PMS lifetimes. We conclude with a series of predictions for observables based on our model.
77 - P. Gondoin 2018
Observations of young open clusters show a bimodal distribution of stellar rotation. Sun-like stars in those clusters group into two main sub-populations of fast and slow rotators. Beyond an age of about 500 Myrs, the two populations converge towards a single peak distribution of angular velocities. I argue that this evolution of stellar rotation in open clusters results from a brief episode of enhanced angular momentum loss by strong stellar wind during the early evolution of rapidly rotating Sun-like stars
111 - R. Salinas 2018
Broad, extended main sequence turnoffs seen in the majority of the intermediate-age (1-3 Gyr) LMC star clusters, have been interpreted as the result of an extended star formation history and/or the effect of extreme stellar rotation. A more fundament al explanation may be given by stellar variability. For clusters in these age range, the instability strip crosses the upper main sequence producing a number of variable stars (known as Delta Scuti) which, if nor properly taken into account, could appear as an extended turnoff. First results of a variability program in the LMC cluster NGC 1846 reveals a sizeable number of this type of variables, although still too low to produce a meaningful broadening, with the caveat that the true variable content of the center of this and other clusters in the LMC will only be revealed with a dedicated HST program.
The origin of the chemical anomalies in star clusters is still an open question, although much effort has been employed both from a theoretical and observational point of view. The exploration of whether such multiple stellar populations are found ba sed on certain properties of clusters has represented a compelling line of investigation so far. Here I report an overview of the results obtained from our latest surveys aimed at characterising the phenomenon of chemical variations in star clusters that are much younger with respect to the ancient globular clusters. The fundamental question we are asking is whether these abundance patterns are only restricted to the old massive clusters; and if not, is there a difference between young and old objects?
In early-type stars a fossil magnetic field may be generated during the star formation process or be the result of a stellar merger event. Surface magnetic fields are thought to be erased by (sub)surface convection layers, which typically leave behin d weak disordered fields. However, if the fossil field is strong enough it can prevent the onset of (sub)surface convection and so be preserved onto the main sequence. We calculate the critical field strength at which this occurs, and find that it corresponds well with the lower limit amplitude of observed fields in strongly magnetised Ap/Bp stars ($approx$ 300 G). The critical field strength is predicted to increase slightly during the main sequence evolution, which could also explain the observed decline in the fraction of magnetic stars. This supports the conclusion that the bimodal distribution of observed magnetic fields in early-type stars reflects two different field origin stories: strongly magnetic fields are fossils fields inherited from star formation or a merger event, and weak fields are the product of on-going dynamo action.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا