ترغب بنشر مسار تعليمي؟ اضغط هنا

The overlooked role of stellar variability in LMC intermediate-age clusters

112   0   0.0 ( 0 )
 نشر من قبل Ricardo Salinas
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Salinas




اسأل ChatGPT حول البحث

Broad, extended main sequence turnoffs seen in the majority of the intermediate-age (1-3 Gyr) LMC star clusters, have been interpreted as the result of an extended star formation history and/or the effect of extreme stellar rotation. A more fundamental explanation may be given by stellar variability. For clusters in these age range, the instability strip crosses the upper main sequence producing a number of variable stars (known as Delta Scuti) which, if nor properly taken into account, could appear as an extended turnoff. First results of a variability program in the LMC cluster NGC 1846 reveals a sizeable number of this type of variables, although still too low to produce a meaningful broadening, with the caveat that the true variable content of the center of this and other clusters in the LMC will only be revealed with a dedicated HST program.

قيم البحث

اقرأ أيضاً

63 - Ricardo Salinas 2016
Intermediate-age star clusters in the Large Magellanic Cloud show extended main sequence turn offs (MSTOs), which are not consistent with a canonical single stellar population. These broad turn offs have been interpreted as evidence for extended star formation and/or stellar rotation. Since most of these studies use single frames per filter to do the photometry, the presence of variable stars near the MSTO in these clusters has remained unnoticed and their impact totally ignored. We model the influence of Delta Scuti using synthetic CMDs, adding variable stars following different levels of incidence and amplitude distributions. We show that Delta Scuti observed at a single phase will produce a broadening of the MSTO without affecting other areas of a CMD like the upper MS or the red clump; furthermore, the amount of spread introduced correlates with cluster age as observed. This broadening is constrained to ages ~ 1-3 Gyr when the MSTO area crosses the instability strip, which is also consistent with observations. Variable stars cannot explain bifurcated MSTOs or the extended MSTOs seen in some young clusters, but they can make an important contribution to the extended MSTOs in intermediate-age clusters.
Intermediate-age star clusters in the LMC present extended main sequence turnoffs (MSTO) that have been attributed to either multiple stellar populations or an effect of stellar rotation. Recently it has been proposed that these extended main sequenc es can also be produced by ill-characterized stellar variability. Here we present Gemini-S/GMOS time series observations of the intermediate-age cluster NGC 1846. Using differential image analysis, we identified 73 new variable stars, with 55 of those being of the Delta Scuti type, that is, pulsating variables close the MSTO for the cluster age. Considering completeness and background contamination effects we estimate the number of Delta Scuti belonging to the cluster between 40 and 60 members, although this number is based on the detection of a single Delta Scuti within the cluster half-light radius. This amount of variable stars at the MSTO level will not produce significant broadening of the MSTO, albeit higher resolution imaging will be needed to rule out variable stars as a major contributor to the extended MSTO phenomenon. Though modest, this amount of Delta Scuti makes NGC 1846 the star cluster with the highest number of these variables ever discovered. Lastly, our results are a cautionary tale about the adequacy of shallow variability surveys in the LMC (like OGLE) to derive properties of its Delta Scuti population.
Most star clusters at an intermediate age (1-2 Gyr) in the Large and Small Magellanic Clouds show a puzzling feature in their color-magnitude diagrams (CMD) that is not in agreement with a simple stellar population. The main sequence turn-off of thes e clusters is much broader than would be expected from photometric uncertainties. One interpretation of this feature is that age spreads of the order 200-500 Myr exist within individual clusters, although this interpretation is highly debated. Such large age spreads should affect other parts of the CMD, which are sensitive to age, as well. In this study, we analyze the CMDs of a sample of 12 intermediate-age clusters in the Large Magellanic Cloud that all show an extended turn-off using archival optical data taken with the Hubble Space Telescope. We fit the star formation history of the turn-off region and the red clump region independently with two different theoretical isochrone models. We find that in most of the cases, the age spreads inferred from the red clumps are smaller than the ones resulting from the turn-off region. However, the age ranges resulting from the red clump region are broader than would be expected for a single age. Only two out of 12 clusters in our sample show a red clump which seems to be consistent with a single age. As our results are not unambiguous, we can not ultimately tell if the extended main sequence turn-off feature is due to an age spread, or not, by fitting the star formation histories to the red clump regions. However, we find that the width of the extended main sequence turn-off feature is correlated with the age of the clusters in a way which would be unexplained in the age spread interpretation, but which may be expected if stellar rotation is the cause of the spread at the turn-off.
The origin of the chemical anomalies in star clusters is still an open question, although much effort has been employed both from a theoretical and observational point of view. The exploration of whether such multiple stellar populations are found ba sed on certain properties of clusters has represented a compelling line of investigation so far. Here I report an overview of the results obtained from our latest surveys aimed at characterising the phenomenon of chemical variations in star clusters that are much younger with respect to the ancient globular clusters. The fundamental question we are asking is whether these abundance patterns are only restricted to the old massive clusters; and if not, is there a difference between young and old objects?
We show that the extended main sequence turnoffs seen in intermediate age Large Magellanic Cloud (LMC) clusters, often attributed to age spreads of several hundred Myr, may be easily accounted for by variable stellar rotation in a coeval population. We compute synthetic photometry for grids of rotating stellar evolution models and interpolate them to produce isochrones at a variety of rotation rates and orientations. An extended main sequence turnoff naturally appears in color-magnitude diagrams at ages just under 1 Gyr, peaks in extent between ~1 and 1.5 Gyr, and gradually disappears by around 2 Gyr in age. We then fit our interpolated isochrones by eye to four LMC clusters with very extended main sequence turnoffs: NGC 1783, 1806, 1846, and 1987. In each case, stellar populations with a single age and metallicity can comfortably account for the observed extent of the turnoff region. The new stellar models predict almost no correlation of turnoff color with rotational vsini: the red edge of the turnoff is populated by a combination of slow rotators and edge-on rapid rotators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا