ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Language-specificity of Multilingual BERT and the Impact of Fine-tuning

134   0   0.0 ( 0 )
 نشر من قبل Marc Tanti
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has shown evidence that the knowledge acquired by multilingual BERT (mBERT) has two components: a language-specific and a language-neutral one. This paper analyses the relationship between them, in the context of fine-tuning on two tasks -- POS tagging and natural language inference -- which require the model to bring to bear different degrees of language-specific knowledge. Visualisations reveal that mBERT loses the ability to cluster representations by language after fine-tuning, a result that is supported by evidence from language identification experiments. However, further experiments on unlearning language-specific representations using gradient reversal and iterative adversarial learning are shown not to add further improvement to the language-independent component over and above the effect of fine-tuning. The results presented here suggest that the process of fine-tuning causes a reorganisation of the models limited representational capacity, enhancing language-independent representations at the expense of language-specific ones.



قيم البحث

اقرأ أيضاً

This paper is a study of fine-tuning of BERT contextual representations, with focus on commonly observed instabilities in few-sample scenarios. We identify several factors that cause this instability: the common use of a non-standard optimization met hod with biased gradient estimation; the limited applicability of significant parts of the BERT network for down-stream tasks; and the prevalent practice of using a pre-determined, and small number of training iterations. We empirically test the impact of these factors, and identify alternative practices that resolve the commonly observed instability of the process. In light of these observations, we re-visit recently proposed methods to improve few-sample fine-tuning with BERT and re-evaluate their effectiveness. Generally, we observe the impact of these methods diminishes significantly with our modified process.
101 - Yuki Arase , Junichi Tsujii 2019
A semantic equivalence assessment is defined as a task that assesses semantic equivalence in a sentence pair by binary judgment (i.e., paraphrase identification) or grading (i.e., semantic textual similarity measurement). It constitutes a set of task s crucial for research on natural language understanding. Recently, BERT realized a breakthrough in sentence representation learning (Devlin et al., 2019), which is broadly transferable to various NLP tasks. While BERTs performance improves by increasing its model size, the required computational power is an obstacle preventing practical applications from adopting the technology. Herein, we propose to inject phrasal paraphrase relations into BERT in order to generate suitable representations for semantic equivalence assessment instead of increasing the model size. Experiments on standard natural language understanding tasks confirm that our method effectively improves a smaller BERT model while maintaining the model size. The generated model exhibits superior performance compared to a larger BERT model on semantic equivalence assessment tasks. Furthermore, it achieves larger performance gains on tasks with limited training datasets for fine-tuning, which is a property desirable for transfer learning.
Large pre-trained sentence encoders like BERT start a new chapter in natural language processing. A common practice to apply pre-trained BERT to sequence classification tasks (e.g., classification of sentences or sentence pairs) is by feeding the emb edding of [CLS] token (in the last layer) to a task-specific classification layer, and then fine tune the model parameters of BERT and classifier jointly. In this paper, we conduct systematic analysis over several sequence classification datasets to examine the embedding values of [CLS] token before the fine tuning phase, and present the biased embedding distribution issue---i.e., embedding values of [CLS] concentrate on a few dimensions and are non-zero centered. Such biased embedding brings challenge to the optimization process during fine-tuning as gradients of [CLS] embedding may explode and result in degraded model performance. We further propose several simple yet effective normalization methods to modify the [CLS] embedding during the fine-tuning. Compared with the previous practice, neural classification model with the normalized embedding shows improvements on several text classification tasks, demonstrates the effectiveness of our method.
While there has been much recent work studying how linguistic information is encoded in pre-trained sentence representations, comparatively little is understood about how these models change when adapted to solve downstream tasks. Using a suite of an alysis techniques (probing classifiers, Representational Similarity Analysis, and model ablations), we investigate how fine-tuning affects the representations of the BERT model. We find that while fine-tuning necessarily makes significant changes, it does not lead to catastrophic forgetting of linguistic phenomena. We instead find that fine-tuning primarily affects the top layers of BERT, but with noteworthy variation across tasks. In particular, dependency parsing reconfigures most of the model, whereas SQuAD and MNLI appear to involve much shallower processing. Finally, we also find that fine-tuning has a weaker effect on representations of out-of-domain sentences, suggesting room for improvement in model generalization.
Fine-tuning pre-trained language models (PTLMs), such as BERT and its better variant RoBERTa, has been a common practice for advancing performance in natural language understanding (NLU) tasks. Recent advance in representation learning shows that iso tropic (i.e., unit-variance and uncorrelated) embeddings can significantly improve performance on downstream tasks with faster convergence and better generalization. The isotropy of the pre-trained embeddings in PTLMs, however, is relatively under-explored. In this paper, we analyze the isotropy of the pre-trained [CLS] embeddings of PTLMs with straightforward visualization, and point out two major issues: high variance in their standard deviation, and high correlation between different dimensions. We also propose a new network regularization method, isotropic batch normalization (IsoBN) to address the issues, towards learning more isotropic representations in fine-tuning by dynamically penalizing dominating principal components. This simple yet effective fine-tuning method yields about 1.0 absolute increment on the average of seven NLU tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا