ﻻ يوجد ملخص باللغة العربية
Fine-tuning pre-trained language models (PTLMs), such as BERT and its better variant RoBERTa, has been a common practice for advancing performance in natural language understanding (NLU) tasks. Recent advance in representation learning shows that isotropic (i.e., unit-variance and uncorrelated) embeddings can significantly improve performance on downstream tasks with faster convergence and better generalization. The isotropy of the pre-trained embeddings in PTLMs, however, is relatively under-explored. In this paper, we analyze the isotropy of the pre-trained [CLS] embeddings of PTLMs with straightforward visualization, and point out two major issues: high variance in their standard deviation, and high correlation between different dimensions. We also propose a new network regularization method, isotropic batch normalization (IsoBN) to address the issues, towards learning more isotropic representations in fine-tuning by dynamically penalizing dominating principal components. This simple yet effective fine-tuning method yields about 1.0 absolute increment on the average of seven NLU tasks.
Large pre-trained sentence encoders like BERT start a new chapter in natural language processing. A common practice to apply pre-trained BERT to sequence classification tasks (e.g., classification of sentences or sentence pairs) is by feeding the emb
This paper is a study of fine-tuning of BERT contextual representations, with focus on commonly observed instabilities in few-sample scenarios. We identify several factors that cause this instability: the common use of a non-standard optimization met
A semantic equivalence assessment is defined as a task that assesses semantic equivalence in a sentence pair by binary judgment (i.e., paraphrase identification) or grading (i.e., semantic textual similarity measurement). It constitutes a set of task
While there has been much recent work studying how linguistic information is encoded in pre-trained sentence representations, comparatively little is understood about how these models change when adapted to solve downstream tasks. Using a suite of an
Sentence ordering aims to arrange the sentences of a given text in the correct order. Recent work frames it as a ranking problem and applies deep neural networks to it. In this work, we propose a new method, named BERT4SO, by fine-tuning BERT for sen