ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise-Resistant Quantum State Compression Readout

107   0   0.0 ( 0 )
 نشر من قبل Heliang Huang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum state measurement is not only a fundamental component of quantum physics, but also plays an important role in the development of various practical quantum technologies, including quantum communication, quantum computing, as well as quantum metrology. However, the fidelity of readout exponentially decays with the number of qubits, which would hinder the large-scale expansion of quantum information processing. In particular, qubit measurement is generally the most error-prone operation on a quantum computer. Here, we present a quantum state readout method, named compression readout, to avoid huge errors caused by multi-qubit measurement, by compressing the quantum state into a single ancilla qubit and measuring this ancilla qubit. Compared with conventional measurements, our method is significantly more resilient against the readout noise from qubit growth, making it a promising candidate for high-fidelity quantum state readout in large-scale quantum computing.



قيم البحث

اقرأ أيضاً

Entangled atomic states, such as spin squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin sq ueezing in strongly interacting many-body systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is robust to noise which outperforms conventional methods. Potential experimental implementations are discussed.
Theories involving localized collapse allow the possibility that classical information could be obtained about quantum states without using POVMS and without allowing superluminal signalling. We can model this by extending quantum theory to include h ypothetical devices that read out information about the local quantum state at a given point, defined by considering only collapses in its past light cone. Like Popescu-Rohrlich boxes, these hypothetical devices would have practical and scientific implications if realisable. These include signalling through opaque media, probing the physics of distant or opaque systems without needing a reflected signal and giving detailed information about collapse dynamics without requiring direct observation of the collapsing system. These potential applications motivate systematic searches for possible signatures of these nonstandard extensions of quantum theory, and in particular for relevant gravitational effects, such as the validity of semi-classical gravity on small scales.
We develop a systematic method of performing corrected gate operations on an array of exchange-coupled singlet-triplet qubits in the presence of both fluctuating nuclear Overhauser field gradients and charge noise. The single-qubit control sequences we present have a simple form, are relatively short, and form the building blocks of a corrected CNOT gate when also implemented on the inter-qubit exchange link. This is a key step towards enabling large-scale quantum computation in a semiconductor-based architecture by facilitating error reduction below the quantum error correction threshold for both single-qubit and multi-qubit gate operations.
Landau-Zener physics is often exploited to generate quantum logic gates and to perform state initialization and readout. The quality of these operations can be degraded by noise fluctuations in the energy gap at the avoided crossing. We leverage a re cently discovered correspondence between qubit evolution and space curves in three dimensions to design noise-robust Landau-Zener sweeps through an avoided crossing. In the case where the avoided crossing is purely noise-induced, we prove that operations based on monotonic sweeps cannot be robust to noise. Hence, we design families of phase gates based on non-monotonic drives that are error-robust up to second order. In the general case where there is an avoided crossing even in the absence of noise, we present a general technique for designing robust driving protocols that takes advantage of a relationship between the Landau-Zener problem and space curves of constant torsion.
Robust, high-fidelity readout is central to quantum device performance. Overcoming poor readout is an increasingly urgent challenge for devices based on solid-state spin defects, particularly given their rapid adoption in quantum sensing, quantum inf ormation, and tests of fundamental physics. Spin defects in solids combine the repeatability and precision available to atomic and cryogenic systems with substantial advantages in compactness and range of operating conditions. However, in spite of experimental progress in specific systems, solid-state spin sensors still lack a universal, high-fidelity readout technique. Here we demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity, building on similar techniques commonly applied in cryogenic circuit cavity quantum electrodynamics. This strong collective interaction allows the spin ensembles microwave transition to be probed directly, thereby overcoming the optical photon shot noise limitations of conventional fluorescence readout. Applying this technique to magnetometry, we show magnetic sensitivity approaching the Johnson-Nyquist noise limit of the system. This readout technique is viable for the many paramagnetic spin systems that exhibit resonances in the microwave domain. Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا