ﻻ يوجد ملخص باللغة العربية
We demonstrate theoretically the noise-stimulated enhancement of quantum coherence in a superconducting flux qubit. First, an external classical noise can increase the off-diagonal components of the qubit density matrix. Second, in the presence of noise, the Rabi oscillations survive for times significantly longer than the Rabi decay time in a noiseless system. These Rabi oscillations appear as a modulation of the forced response of the qubit to the ac driving field. These effects can be considered as a manifestation of quantum stochastic resonance and are relevant to experimental techniques, such as Rabi spectroscopy.
We infer the high-frequency flux noise spectrum in a superconducting flux qubit by studying the decay of Rabi oscillations under strong driving conditions. The large anharmonicity of the qubit and its strong inductive coupling to a microwave line ena
Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a _continuously_ observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to
The act of measurement bridges the quantum and classical worlds by projecting a superposition of possible states into a single, albeit probabilistic, outcome. The time-scale of this instantaneous process can be stretched using weak measurements so th
We discuss how standard $T_2$-based quantum sensing and noise spectroscopy protocols often give rise to an inadvertent quench of the system or environment being probed: there is an effective sudden change in the environmental Hamiltonian at the start
We analyze the strong-coupling dynamics of a driven harmonic oscillator whose energy is modulated by a continuum of other bosonic modes. This type of system-bath interaction appears, for example, in optomechanical or equivalent circuit QED setups, wh