ﻻ يوجد ملخص باللغة العربية
Mobile Edge Caching is a promising technique to enhance the content delivery quality and reduce the backhaul link congestion, by storing popular content at the network edge or mobile devices (e.g. base stations and smartphones) that are proximate to content requesters. In this work, we study a novel mobile edge caching framework, which enables mobile devices to cache and share popular contents with each other via device-to-device (D2D) links. We are interested in the following incentive problem of mobile device users: whether and which users are willing to cache and share what contents, taking the user mobility and cost/reward into consideration. The problem is challenging in a large-scale network with a large number of users. We introduce the evolutionary game theory, an effective tool for analyzing large-scale dynamic systems, to analyze the mobile users content caching and sharing strategies. Specifically, we first derive the users best caching and sharing strategies, and then analyze how these best strategies change dynamically over time, based on which we further characterize the system equilibrium systematically. Simulation results show that the proposed caching scheme outperforms the existing schemes in terms of the total transmission cost and the cellular load. In particular, in our simulation, the total transmission cost can be reduced by 42.5%-55.2% and the cellular load can be reduced by 21.5%-56.4%.
Crowdsourced mobile edge caching and sharing (Crowd-MECS) is emerging as a promising content delivery paradigm by employing a large crowd of existing edge devices (EDs) to cache and share popular contents. The successful technology adoption of Crowd-
Mining in the blockchain requires high computing power to solve the hash puzzle for example proof-of-work puzzle. It takes high cost to achieve the calculation of this problem in devices of IOT, especially the mobile devices of IOT. It consequently r
In this work, we study the social learning problem, in which agents of a networked system collaborate to detect the state of the nature based on their private signals. A novel distributed graphical evolutionary game theoretic learning method is propo
In this paper, a novel framework for normative modeling of the spectrum sensing and sharing problem in cognitive radios (CRs) as a transferable utility (TU) cooperative game is proposed. Secondary users (SUs) jointly sense the spectrum and cooperativ
An essential primitive for an efficient research ecosystem is emph{partial-progress sharing} (PPS) -- whereby a researcher shares information immediately upon making a breakthrough. This helps prevent duplication of work; however there is evidence th