ﻻ يوجد ملخص باللغة العربية
An essential primitive for an efficient research ecosystem is emph{partial-progress sharing} (PPS) -- whereby a researcher shares information immediately upon making a breakthrough. This helps prevent duplication of work; however there is evidence that existing reward structures in research discourage partial-progress sharing. Ensuring PPS is especially important for new online collaborative-research platforms, which involve many researchers working on large, multi-stage problems. We study the problem of incentivizing information-sharing in research, under a stylized model: non-identical agents work independently on subtasks of a large project, with dependencies between subtasks captured via an acyclic subtask-network. Each subtask carries a reward, given to the first agent who publicly shares its solution. Agents can choose which subtasks to work on, and more importantly, when to reveal solutions to completed subtasks. Under this model, we uncover the strategic rationale behind certain anecdotal phenomena. Moreover, for any acyclic subtask-network, and under a general model of agent-subtask completion times, we give sufficient conditions that ensure PPS is incentive-compatible for all agents. One surprising finding is that rewards which are approximately proportional to perceived task-difficulties are sufficient to ensure PPS in all acyclic subtask-networks. The fact that there is no tension between local fairness and global information-sharing in multi-stage projects is encouraging, as it suggests practical mechanisms for real-world settings. Finally, we show that PPS is necessary, and in many cases, sufficient, to ensure a high rate of progress in research.
Mobile Edge Caching is a promising technique to enhance the content delivery quality and reduce the backhaul link congestion, by storing popular content at the network edge or mobile devices (e.g. base stations and smartphones) that are proximate to
We make three different types of contributions to cost-sharing: First, we identify several new classes of combinatorial cost functions that admit incentive-compatible mechanisms achieving both a constant-factor approximation of budget-balance and a p
We study the causal effects of financial incentives on the quality of crowdwork. We focus on performance-based payments (PBPs), bonus payments awarded to workers for producing high quality work. We design and run randomized behavioral experiments on
Mining in the blockchain requires high computing power to solve the hash puzzle for example proof-of-work puzzle. It takes high cost to achieve the calculation of this problem in devices of IOT, especially the mobile devices of IOT. It consequently r
We consider a ubiquitous scenario in the Internet economy when individual decision-makers (henceforth, agents) both produce and consume information as they make strategic choices in an uncertain environment. This creates a three-way tradeoff between