ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Resolution Image Harmonization via Collaborative Dual Transformations

83   0   0.0 ( 0 )
 نشر من قبل Wenyan Cong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a composite image, image harmonization aims to adjust the foreground to make it compatible with the background. High-resolution image harmonization is in high demand, but still remains unexplored. Conventional image harmonization methods learn global RGB-to-RGB transformation which could effortlessly scale to high resolution, but ignore diverse local context. Recent deep learning methods learn the dense pixel-to-pixel transformation which could generate harmonious outputs, but are highly constrained in low resolution. In this work, we propose a high-resolution image harmonization network with Collaborative Dual Transformation (CDTNet) to combine pixel-to-pixel transformation and RGB-to-RGB transformation coherently in an end-to-end framework. Our CDTNet consists of a low-resolution generator for pixel-to-pixel transformation, a color mapping module for RGB-to-RGB transformation, and a refinement module to take advantage of both. Extensive experiments on high-resolution image harmonization dataset demonstrate that our CDTNet strikes a good balance between efficiency and effectiveness.



قيم البحث

اقرأ أيضاً

Image harmonization aims to modify the color of the composited region with respect to the specific background. Previous works model this task as a pixel-wise image-to-image translation using UNet family structures. However, the model size and computa tional cost limit the performability of their models on edge devices and higher-resolution images. To this end, we propose a novel spatial-separated curve rendering network (S$^2$CRNet) for efficient and high-resolution image harmonization for the first time. In S$^2$CRNet, we firstly extract the spatial-separated embeddings from the thumbnails of the masked foreground and background individually. Then, we design a curve rendering module (CRM), which learns and combines the spatial-specific knowledge using linear layers to generate the parameters of the pixel-wise curve mapping in the foreground region. Finally, we directly render the original high-resolution images using the learned color curve. Besides, we also make two extensions of the proposed framework via the Cascaded-CRM and Semantic-CRM for cascaded refinement and semantic guidance, respectively. Experiments show that the proposed method reduces more than 90% parameters compared with previous methods but still achieves the state-of-the-art performance on both synthesized iHarmony4 and real-world DIH test set. Moreover, our method can work smoothly on higher resolution images in real-time which is more than 10$times$ faster than the existing methods. The code and pre-trained models will be made available and released at https://github.com/stefanLeong/S2CRNet.
Image composition is an important operation in image processing, but the inconsistency between foreground and background significantly degrades the quality of composite image. Image harmonization, aiming to make the foreground compatible with the bac kground, is a promising yet challenging task. However, the lack of high-quality publicly available dataset for image harmonization greatly hinders the development of image harmonization techniques. In this work, we contribute an image harmonization dataset iHarmony4 by generating synthesized composite images based on COCO (resp., Adobe5k, Flickr, day2night) dataset, leading to our HCOCO (resp., HAdobe5k, HFlickr, Hday2night) sub-dataset. Moreover, we propose a new deep image harmonization method DoveNet using a novel domain verification discriminator, with the insight that the foreground needs to be translated to the same domain as background. Extensive experiments on our constructed dataset demonstrate the effectiveness of our proposed method. Our dataset and code are available at https://github.com/bcmi/Image_Harmonization_Datasets.
Descriptive region features extracted by object detection networks have played an important role in the recent advancements of image captioning. However, they are still criticized for the lack of contextual information and fine-grained details, which in contrast are the merits of traditional grid features. In this paper, we introduce a novel Dual-Level Collaborative Transformer (DLCT) network to realize the complementary advantages of the two features. Concretely, in DLCT, these two features are first processed by a novelDual-way Self Attenion (DWSA) to mine their intrinsic properties, where a Comprehensive Relation Attention component is also introduced to embed the geometric information. In addition, we propose a Locality-Constrained Cross Attention module to address the semantic noises caused by the direct fusion of these two features, where a geometric alignment graph is constructed to accurately align and reinforce region and grid features. To validate our model, we conduct extensive experiments on the highly competitive MS-COCO dataset, and achieve new state-of-the-art performance on both local and online test sets, i.e., 133.8% CIDEr-D on Karpathy split and 135.4% CIDEr on the official split. Code is available at https://github.com/luo3300612/image-captioning-DLCT.
Compositing is one of the most common operations in photo editing. To generate realistic composites, the appearances of foreground and background need to be adjusted to make them compatible. Previous approaches to harmonize composites have focused on learning statistical relationships between hand-crafted appearance features of the foreground and background, which is unreliable especially when the contents in the two layers are vastly different. In this work, we propose an end-to-end deep convolutional neural network for image harmonization, which can capture both the context and semantic information of the composite images during harmonization. We also introduce an efficient way to collect large-scale and high-quality training data that can facilitate the training process. Experiments on the synthesized dataset and real composite images show that the proposed network outperforms previous state-of-the-art methods.
Recently, deep learning based single image super-resolution(SR) approaches have achieved great development. The state-of-the-art SR methods usually adopt a feed-forward pipeline to establish a non-linear mapping between low-res(LR) and high-res(HR) i mages. However, due to treating all image regions equally without considering the difficulty diversity, these approaches meet an upper bound for optimization. To address this issue, we propose a novel SR approach that discriminately processes each image region within an image by its difficulty. Specifically, we propose a dual-way SR network that one way is trained to focus on easy image regions and another is trained to handle hard image regions. To identify whether a region is easy or hard, we propose a novel image difficulty recognition network based on PSNR prior. Our SR approach that uses the region mask to adaptively enforce the dual-way SR network yields superior results. Extensive experiments on several standard benchmarks (e.g., Set5, Set14, BSD100, and Urban100) show that our approach achieves state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا