ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-Level Collaborative Transformer for Image Captioning

91   0   0.0 ( 0 )
 نشر من قبل Yunpeng Luo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Descriptive region features extracted by object detection networks have played an important role in the recent advancements of image captioning. However, they are still criticized for the lack of contextual information and fine-grained details, which in contrast are the merits of traditional grid features. In this paper, we introduce a novel Dual-Level Collaborative Transformer (DLCT) network to realize the complementary advantages of the two features. Concretely, in DLCT, these two features are first processed by a novelDual-way Self Attenion (DWSA) to mine their intrinsic properties, where a Comprehensive Relation Attention component is also introduced to embed the geometric information. In addition, we propose a Locality-Constrained Cross Attention module to address the semantic noises caused by the direct fusion of these two features, where a geometric alignment graph is constructed to accurately align and reinforce region and grid features. To validate our model, we conduct extensive experiments on the highly competitive MS-COCO dataset, and achieve new state-of-the-art performance on both local and online test sets, i.e., 133.8% CIDEr-D on Karpathy split and 135.4% CIDEr on the official split. Code is available at https://github.com/luo3300612/image-captioning-DLCT.

قيم البحث

اقرأ أيضاً

Automatic captioning of images is a task that combines the challenges of image analysis and text generation. One important aspect in captioning is the notion of attention: How to decide what to describe and in which order. Inspired by the successes i n text analysis and translation, previous work have proposed the textit{transformer} architecture for image captioning. However, the structure between the textit{semantic units} in images (usually the detected regions from object detection model) and sentences (each single word) is different. Limited work has been done to adapt the transformers internal architecture to images. In this work, we introduce the textbf{textit{image transformer}}, which consists of a modified encoding transformer and an implicit decoding transformer, motivated by the relative spatial relationship between image regions. Our design widen the original transformer layers inner architecture to adapt to the structure of images. With only regions feature as inputs, our model achieves new state-of-the-art performance on both MSCOCO offline and online testing benchmarks.
Existing image captioning methods just focus on understanding the relationship between objects or instances in a single image, without exploring the contextual correlation existed among contextual image. In this paper, we propose Dual Graph Convoluti onal Networks (Dual-GCN) with transformer and curriculum learning for image captioning. In particular, we not only use an object-level GCN to capture the object to object spatial relation within a single image, but also adopt an image-level GCN to capture the feature information provided by similar images. With the well-designed Dual-GCN, we can make the linguistic transformer better understand the relationship between different objects in a single image and make full use of similar images as auxiliary information to generate a reasonable caption description for a single image. Meanwhile, with a cross-review strategy introduced to determine difficulty levels, we adopt curriculum learning as the training strategy to increase the robustness and generalization of our proposed model. We conduct extensive experiments on the large-scale MS COCO dataset, and the experimental results powerfully demonstrate that our proposed method outperforms recent state-of-the-art approaches. It achieves a BLEU-1 score of 82.2 and a BLEU-2 score of 67.6. Our source code is available at {em color{magenta}{url{https://github.com/Unbear430/DGCN-for-image-captioning}}}.
In this paper, we consider the image captioning task from a new sequence-to-sequence prediction perspective and propose CaPtion TransformeR (CPTR) which takes the sequentialized raw images as the input to Transformer. Compared to the CNN+Transformer design paradigm, our model can model global context at every encoder layer from the beginning and is totally convolution-free. Extensive experiments demonstrate the effectiveness of the proposed model and we surpass the conventional CNN+Transformer methods on the MSCOCO dataset. Besides, we provide detailed visualizations of the self-attention between patches in the encoder and the words-to-patches attention in the decoder thanks to the full Transformer architecture.
Automatic transcription of scene understanding in images and videos is a step towards artificial general intelligence. Image captioning is a nomenclature for describing meaningful information in an image using computer vision techniques. Automated im age captioning techniques utilize encoder and decoder architecture, where the encoder extracts features from an image and the decoder generates a transcript. In this work, we investigate two unexplored ideas for image captioning using transformers: First, we demonstrate the enforcement of using objects relevance in the surrounding environment. Second, learning an explicit association between labels and language constructs. We propose label-attention Transformer with geometrically coherent objects (LATGeO). The proposed technique acquires a proposal of geometrically coherent objects using a deep neural network (DNN) and generates captions by investigating their relationships using a label-attention module. Object coherence is defined using the localized ratio of the geometrical properties of the proposals. The label-attention module associates the extracted objects classes to the available dictionary using self-attention layers. The experimentation results show that objects relevance in surroundings and binding of their visual feature with their geometrically localized ratios combined with its associated labels help in defining meaningful captions. The proposed framework is tested on the MSCOCO dataset, and a thorough evaluation resulting in overall better quantitative scores pronounces its superiority.
82 - Wenyan Cong , Xinhao Tao , Li Niu 2021
Given a composite image, image harmonization aims to adjust the foreground to make it compatible with the background. High-resolution image harmonization is in high demand, but still remains unexplored. Conventional image harmonization methods learn global RGB-to-RGB transformation which could effortlessly scale to high resolution, but ignore diverse local context. Recent deep learning methods learn the dense pixel-to-pixel transformation which could generate harmonious outputs, but are highly constrained in low resolution. In this work, we propose a high-resolution image harmonization network with Collaborative Dual Transformation (CDTNet) to combine pixel-to-pixel transformation and RGB-to-RGB transformation coherently in an end-to-end framework. Our CDTNet consists of a low-resolution generator for pixel-to-pixel transformation, a color mapping module for RGB-to-RGB transformation, and a refinement module to take advantage of both. Extensive experiments on high-resolution image harmonization dataset demonstrate that our CDTNet strikes a good balance between efficiency and effectiveness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا