ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden long evolutionary memory in a model biochemical network

202   0   0.0 ( 0 )
 نشر من قبل Md Zulfikar Ali
 تاريخ النشر 2017
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.



قيم البحث

اقرأ أيضاً

Design of experiments is a branch of statistics that aims to identify efficient procedures for planning experiments in order to optimize knowledge discovery. Network inference is a subfield of systems biology devoted to the identification of biochemi cal networks from experimental data. Common to both areas of research is their focus on the maximization of information gathered from experimentation. The goal of this paper is to establish a connection between these two areas coming from the common use of polynomial models and techniques from computational algebra.
There are many mathematical models of biochemical cell signaling pathways that contain a large number of elements (species and reactions). This is sometimes a big issue for identifying critical model elements and describing the model dynamics. Thus, techniques of model reduction can be used as a mathematical tool in order to minimize the number of variables and parameters. In this thesis, we review some well-known methods of model reduction for cell signaling pathways. We have also developed some approaches that provide us a great step forward in model reduction. The techniques are quasi steady state approximation (QSSA), quasi equilibrium approximation (QEA), lumping of species and entropy production analysis. They are applied on protein translation pathways with microRNA mechanisms, chemical reaction networks, extracellular signal regulated kinase (ERK) pathways, NFkB signal transduction pathways, elongation factors EFTu and EFTs signaling pathways and Dihydrofolate reductase (DHFR) pathways. The main aim of this thesis is to reduce the complex cell signaling pathway models. This provides one a better understanding of the dynamics of such models and gives an accurate approximate solution. Results show that there is a good agreement between the original models and the simplified models.
The hyperbolic dependence of catalytic rate on substrate concentration is a classical result in enzyme kinetics, quantified by the celebrated Michaelis-Menten equation. The ubiquity of this relation in diverse chemical and biological contexts has rec ently been rationalized by a graph-theoretic analysis of deterministic reaction networks. Experiments, however, have revealed that molecular noise - intrinsic stochasticity at the molecular scale - leads to significant deviations from classical results and to unexpected effects like molecular memory, i.e., the breakdown of statistical independence between turnover events. Here we show, through a new method of analysis, that memory and non-hyperbolicity have a common source in an initial, and observably long, transient peculiar to stochastic reaction networks of multiple enzymes. Networks of single enzymes do not admit such transients. The transient yields, asymptotically, to a steady-state in which memory vanishes and hyperbolicity is recovered. We propose new statistical measures, defined in terms of turnover times, to distinguish between the transient and steady states and apply these to experimental data from a landmark experiment that first observed molecular memory in a single enzyme with multiple binding sites. Our study shows that catalysis at the molecular level with more than one enzyme always contains a non-classical regime and provides insight on how the classical limit is attained.
Gene expression levels carry information about signals that have functional significance for the organism. Using the gap gene network in the fruit fly embryo as an example, we show how this information can be decoded, building a dictionary that trans lates expression levels into a map of implied positions. The optimal decoder makes use of graded variations in absolute expression level, resulting in positional estimates that are precise to ~1% of the embryos length. We test this optimal decoder by analyzing gap gene expression in embryos lacking some of the primary maternal inputs to the network. The resulting maps are distorted, and these distortions predict, with no free parameters, the positions of expression stripes for the pair-rule genes in the mutant embryos.
Here we present ComPPI, a cellular compartment specific database of proteins and their interactions enabling an extensive, compartmentalized protein-protein interaction network analysis (http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein-protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of more than 1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein-protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا