ﻻ يوجد ملخص باللغة العربية
Bose-Einstein condensation (BEC) of triplet excitations triggered by a magnetic field, sometimes called magnon BEC, in dimerized antiferromagnets gives rise to a long-range antiferromagnetic order in the plane perpendicular to the applied magnetic field. To explore the effects of spin-orbit coupling on magnon condensation, we study the spin model on the distorted honeycomb lattice with dimerized Heisenberg exchange ($J$ terms) and uniform off-diagonal exchange ($Gamma$ terms) interactions. By using variational Monte Carlo method and spin wave theory, we find that an out-of-plane magnetic field can induce different types of long-range magnetic orders, no matter if the ground state is a non-magnetic dimerized state or an antiferromagnetically ordered N{e}el state. Furthermore, the critical properties of field-driven phase transitions in systems with spin-orbit coupling can be different from the conventional magnon BEC. Our study is helpful to understand the rich phases of spin-orbit coupled antiferromagnets in an external magnetic field.
Synthetic antiferromagnet, comprised of two ferromagnetic layers separated by a non-magnetic layer, possesses two uniform precession resonance modes: in-phase acoustic mode and out-of-phase optic mode. In this work, we theoretically and numerically d
In this work, we investigate the evolution and settling of magnon condensation in the spin-1/2 dimer system Sr$_{3}$Cr$_{2}$O$_{8}$ using a combination of magnetostriction in pulsed fields and inelastic neutron scattering in a continuous magnetic fie
The magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce the magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. H
A hole injected into a Mott insulator will gain an internal structure as recently identified by exact numerics, which is characterized by a nontrivial quantum number whose nature is of central importance in understanding the Mott physics. In this wor
We use the Gutzwiller variational theory to investigate the electronic and the magnetic properties of fcc-Nickel. Our particular focus is on the effects of the spin-orbit coupling. Unlike standard relativistic band-structure theories, we reproduce th