ترغب بنشر مسار تعليمي؟ اضغط هنا

Can High-velocity Protostellar Jets Help to Drive Low-velocity Outflow?

75   0   0.0 ( 0 )
 نشر من قبل Masahiro Machida N
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using three-dimensional magnetohydrodynamics simulations, the driving of protostellar jets is investigated in different star-forming cores with the parameters of magnetic field strength and mass accretion rate. Powerful high-velocity jets appear in strongly magnetized clouds when the mass accretion rate onto the protostellar system is lower than $dot{M} lesssim 10^{-3},{rm M}_odot$ yr$^{-1}$. On the other hand, even at this mass accretion rate range, no jets appear for magnetic fields of prestellar clouds as weak as $mu_0 gtrsim 5$--$10$, where $mu_0$ is the mass-to-flux ratio normalized by the critical value $(2pi G^{1/2})^{-1}$. For $dot{M}gtrsim 10^{-3},{rm M}_odot$ yr$^{-1}$, although jets usually appear just after protostar formation independent of the magnetic field strength, they soon weaken and finally disappear. Thus, they cannot help drive the low-velocity outflow when there is no low-velocity flow just before protostar formation. As a result, no significant mass ejection occurs during the early mass accretion phase either when the prestellar cloud is weaky magnetized or when the mass accretion rate is very high. Thus, protostars formed in such environments would trace different evolutionary paths from the normal star formation process.



قيم البحث

اقرأ أيضاً

Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these veloci ty shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could represent an important contribution to transverse velocity shifts, being the most important contributor for large jet inclination angles (with respect the the plane of the sky), and can not be neglected when interpreting the observations.
Jets and outflows from young stellar objects are proposed candidates to drive supersonic turbulence in molecular clouds. Here, we present the results from multi-dimensional jet simulations where we investigate in detail the energy and momentum deposi tion from jets into their surrounding environment and quantify the character of the excited turbulence with velocity probability density functions. Our study include jet--clump interaction, transient jets, and magnetised jets. We find that collimated supersonic jets do not excite supersonic motions far from the vicinity of the jet. Supersonic fluctuations are damped quickly and do not spread into the parent cloud. Instead subsonic, non-compressional modes occupy most of the excited volume. This is a generic feature which can not be fully circumvented by overdense jets or magnetic fields. Nevertheless, jets are able to leave strong imprints in their cloud structure and can disrupt dense clumps. Our results question the ability of collimated jets to sustain supersonic turbulence in molecular clouds.
We report ALMA observations of a one-sided, high-velocity ($sim$80 km s$^{-1}$) CO($J = 2 rightarrow 1$) jet powered by the intermediate-mass protostellar source Serpens SMM1-a. The highly collimated molecular jet is flanked at the base by a wide-ang le cavity; the walls of the cavity can be seen in both 4 cm free-free emission detected by the VLA and 1.3 mm thermal dust emission detected by ALMA. This is the first time that ionization of an outflow cavity has been directly detected via free-free emission in a very young, embedded Class 0 protostellar source that is still powering a molecular jet. The cavity walls are ionized either by UV photons escaping from the accreting protostellar source, or by the precessing molecular jet impacting the walls. These observations suggest that ionized outflow cavities may be common in Class 0 protostellar sources, shedding further light on the radiation, outflow, and jet environments in the youngest, most embedded forming stars.
167 - David B. Henley 2012
In order to determine if the material ablated from high-velocity clouds (HVCs) is a significant source of low-velocity high ions (C IV, N V, and O VI) such as those found in the Galactic halo, we simulate the hydrodynamics of the gas and the time-dep endent ionization evolution of its carbon, nitrogen, and oxygen ions. Our suite of simulations examines the ablation of warm material from clouds of various sizes, densities, and velocities as they pass through the hot Galactic halo. The ablated material mixes with the environmental gas, producing an intermediate-temperature mixture that is rich in high ions and that slows to the speed of the surrounding gas. We find that the slow mixed material is a significant source of the low-velocity O VI that is observed in the halo, as it can account for at least ~1/3 of the observed O VI column density. Hence, any complete model of the high ions in the halo should include the contribution to the O VI from ablated HVC material. However, such material is unlikely to be a major source of the observed C IV, presumably because the observed C IV is affected by photoionization, which our models do not include. We discuss a composite model that includes contributions from HVCs, supernova remnants, a cooling Galactic fountain, and photoionization by an external radiation field. By design, this model matches the observed O VI column density. This model can also account for most or all of the observed C IV, but only half of the observed N V.
We investigate the diagnostic capabilities of the iron lines for tracing the physical conditions of the shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 300-2500 nm X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Halpha 574 and Par-Lup 3-4. Both spectra are very rich in [FeII] lines over the whole spectral range; in addition, lines from [FeIII] are detected in the ESO-Halpha 574 spectrum. NLTE codes along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density, and fractional ionization. The iron gas-phase abundance is provided by comparing the iron lines emissivity with that of [OI] 630 nm. The [FeII] lines indicate ESO-Halpha 574 jet is, on average, colder (T_e = 9000 K), less dense (n_e = 2 10^4 cm^-3) and more ionized (x_e = 0.7) than the Par-Lup 3-4 jet (T_e = 13000 K, n_e = 6 10^4 cm^-3, x_e < 0.4), even if the existence of a higher density component (n_e = 2 10^5 cm^-3) is probed by the [FeIII] and [FeII] ultra-violet lines. Theoretical models suggest that the shock at work in ESO-Halpha 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-Halpha 574 (50-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-Halpha 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا