ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse velocity shifts in protostellar jets: rotation or velocity asymmetries?

122   0   0.0 ( 0 )
 نشر من قبل Fabio De Colle
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could represent an important contribution to transverse velocity shifts, being the most important contributor for large jet inclination angles (with respect the the plane of the sky), and can not be neglected when interpreting the observations.



قيم البحث

اقرأ أيضاً

It is a well established fact that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates. In ord er to understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and one based on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered and the resulting dynamics are examined both in an ideal and a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the non-uniform density distribution of molecular clouds. Ideal and resistive axisymmetric numerical simulations are carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. We find that jet velocity asymmetries can indeed occur both when multipolar magnetic moments are present in the star-disk system as well as when non-uniform environments are considered. The latter case is an external mechanism that can easily explain the large time scale of the phenomenon, whereas the former one naturally relates it to the YSO intrinsic properties. [abridged]
Using three-dimensional magnetohydrodynamics simulations, the driving of protostellar jets is investigated in different star-forming cores with the parameters of magnetic field strength and mass accretion rate. Powerful high-velocity jets appear in s trongly magnetized clouds when the mass accretion rate onto the protostellar system is lower than $dot{M} lesssim 10^{-3},{rm M}_odot$ yr$^{-1}$. On the other hand, even at this mass accretion rate range, no jets appear for magnetic fields of prestellar clouds as weak as $mu_0 gtrsim 5$--$10$, where $mu_0$ is the mass-to-flux ratio normalized by the critical value $(2pi G^{1/2})^{-1}$. For $dot{M}gtrsim 10^{-3},{rm M}_odot$ yr$^{-1}$, although jets usually appear just after protostar formation independent of the magnetic field strength, they soon weaken and finally disappear. Thus, they cannot help drive the low-velocity outflow when there is no low-velocity flow just before protostar formation. As a result, no significant mass ejection occurs during the early mass accretion phase either when the prestellar cloud is weaky magnetized or when the mass accretion rate is very high. Thus, protostars formed in such environments would trace different evolutionary paths from the normal star formation process.
High-resolution R~50 000 long-slit spectroscopy of the inner knots of the highly symmetrical protostellar outflow HH 212 was obtained in the 1-0 S(1) line of H2 at 2.12 micron with a spatial resolution of ~0.45 arcsec. At the resulting velocity resol ution of ~6 km s-1, multiple slit oriented observations of the northern first knot NK1 clearly show double-peaked line profiles consistent with either a radiative bow shock or dual (forward and reverse) shocks. In contrast, the velocity distribution of the southern first knot SK1 remains single-peaked, suggesting a significantly lower jet velocity and possibly a different density variation in the jet pulses in the southern flow compared to the northern flow. Comparison with a semi-empirical analytical model of bow shock emission allows us to constrain parameters such as the bow inclination to the line of sight, the bow shock and jet velocities for each flow. Although a few features are not reproduced by this model, it confirms the presence of several dynamical and kinematical asymmetries between opposite sides of the HH 212 bipolar jet. The position-velocity diagrams of both knots exhibit complex dynamics that are broadly consistent with emission from a bow shock and/or jet shock, which does not exclude jet rotation, although a clear signature of jet rotation in HH 212 is missing. Alternative interpretations of the variation of radial velocity across these knots, such as a variation in the jet orientation, as well as for the velocity asymmetries between the flows, are also considered. The presence of a correlation between flow velocity and collimation in each flow is suggested.
The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Halpha and Ca II 8542 {AA} lines are studied using high spati al, temporal and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1-m Solar Telescope. The temporal evolution of the Halpha line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum, and excess in the blue wing (blue asymmetry) after maximum. However, the Ca II 8542 {AA} line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesise spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Halpha is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modifies the wavelength of the central reversal in the Halpha line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.
AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days as well as photometric signals: (1) a short period signal which is similar to the radial velocity signal albeit with considerable variability; a nd (2) a long term activity cycle of 4070$pm$120 days. We examine the short-term photometric signal in the available ASAS and MOST photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined HARPS and HIRES radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period or as a function of extracted wavelength. We consider a variety of star-spot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots co-rotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin-orbit resonance. For such a scenario and no spin-orbit misalignment, the measured $v sin i$ indicates an inclination angle of 15.5$pm$2.5 deg and a planetary companion mass of 0.237$pm$0.047 M$_{rm Jup}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا