ﻻ يوجد ملخص باللغة العربية
Molecular similarity search has been widely used in drug discovery to identify structurally similar compounds from large molecular databases rapidly. With the increasing size of chemical libraries, there is growing interest in the efficient acceleration of large-scale similarity search. Existing works mainly focus on CPU and GPU to accelerate the computation of the Tanimoto coefficient in measuring the pairwise similarity between different molecular fingerprints. In this paper, we propose and optimize an FPGA-based accelerator design on exhaustive and approximate search algorithms. On exhaustive search using BitBound & folding, we analyze the similarity cutoff and folding level relationship with search speedup and accuracy, and propose a scalable on-the-fly query engine on FPGAs to reduce the resource utilization and pipeline interval. We achieve a 450 million compounds-per-second processing throughput for a single query engine. On approximate search using hierarchical navigable small world (HNSW), a popular algorithm with high recall and query speed. We propose an FPGA-based graph traversal engine to utilize a high throughput register array based priority queue and fine-grained distance calculation engine to increase the processing capability. Experimental results show that the proposed FPGA-based HNSW implementation has a 103385 query per second (QPS) on the Chembl database with 0.92 recall and achieves a 35x speedup than the existing CPU implementation on average. To the best of our knowledge, our FPGA-based implementation is the first attempt to accelerate molecular similarity search algorithms on FPGA and has the highest performance among existing approaches.
Existing FPGA-based DNN accelerators typically fall into two design paradigms. Either they adopt a generic reusable architecture to support different DNN networks but leave some performance and efficiency on the table because of the sacrifice of desi
Transfer learning in natural language processing (NLP), as realized using models like BERT (Bi-directional Encoder Representation from Transformer), has significantly improved language representation with models that can tackle challenging language p
Deep convolutional neural networks have achieved remarkable progress in recent years. However, the large volume of intermediate results generated during inference poses a significant challenge to the accelerator design for resource-constraint FPGA. D
This paper presents the FPGA hardware design of a turbo decoder for the cdma2000 standard. The work includes a study and mathematical analysis of the turbo decoding process, based on the MAX-Log-MAP algorithm. Results of decoding for a packet size of
Deformable convolution networks (DCNs) proposed to address the image recognition with geometric or photometric variations typically involve deformable convolution that convolves on arbitrary locations of input features. The locations change with diff