ﻻ يوجد ملخص باللغة العربية
Deep convolutional neural networks have achieved remarkable progress in recent years. However, the large volume of intermediate results generated during inference poses a significant challenge to the accelerator design for resource-constraint FPGA. Due to the limited on-chip storage, partial results of intermediate layers are frequently transferred back and forth between on-chip memory and off-chip DRAM, leading to a non-negligible increase in latency and energy consumption. In this paper, we propose block convolution, a hardware-friendly, simple, yet efficient convolution operation that can completely avoid the off-chip transfer of intermediate feature maps at run-time. The fundamental idea of block convolution is to eliminate the dependency of feature map tiles in the spatial dimension when spatial tiling is used, which is realized by splitting a feature map into independent blocks so that convolution can be performed separately on individual blocks. We conduct extensive experiments to demonstrate the efficacy of the proposed block convolution on both the algorithm side and the hardware side. Specifically, we evaluate block convolution on 1) VGG-16, ResNet-18, ResNet-50, and MobileNet-V1 for ImageNet classification task; 2) SSD, FPN for COCO object detection task, and 3) VDSR for Set5 single image super-resolution task. Experimental results demonstrate that comparable or higher accuracy can be achieved with block convolution. We also showcase two CNN accelerators via algorithm/hardware co-design based on block convolution on memory-limited FPGAs, and evaluation shows that both accelerators substantially outperform the baseline without off-chip transfer of intermediate feature maps.
Even with generational improvements in DRAM technology, memory access latency still remains the major bottleneck for application accelerators, primarily due to limitations in memory interface IPs which cannot fully account for variations in target ap
Hybrid memory systems, comprised of emerging non-volatile memory (NVM) and DRAM, have been proposed to address the growing memory demand of applications. Emerging NVM technologies, such as phase-change memories (PCM), memristor, and 3D XPoint, have h
Molecular similarity search has been widely used in drug discovery to identify structurally similar compounds from large molecular databases rapidly. With the increasing size of chemical libraries, there is growing interest in the efficient accelerat
Various hardware accelerators have been developed for energy-efficient and real-time inference of neural networks on edge devices. However, most training is done on high-performance GPUs or servers, and the huge memory and computing costs prevent tra
Cloud applications are increasingly relying on hundreds of loosely-coupled microservices to complete user requests that meet an applications end-to-end QoS requirements. Communication time between services accounts for a large fraction of the end-to-