ترغب بنشر مسار تعليمي؟ اضغط هنا

Anyon Condensation: Coherent states, Symmetry Enriched Topological Phases, Goldstone Theorem, and Dynamical Rearrangement of Symmetry

241   0   0.0 ( 0 )
 نشر من قبل Yuting Hu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although the mathematics of anyon condensation in topological phases has been studied intensively in recent years, a proof of its physical existence is tantamount to constructing an effective Hamiltonian theory. In this paper, we concretely establish the physical foundation of anyon condensation by building the effective Hamiltonian and the Hilbert space, in which we explicitly construct the vacuum of the condensed phase as the coherent states that are the eigenstates of the creation operators that create the condensate anyons. Along with this construction, which is analogous to Laughlins construction of wavefunctions of fractional quantum hall states, we generalize the Goldstone theorem in the usual spontaneous symmetry breaking paradigm to the case of anyon condensation. We then prove that the condensed phase is a symmetry enriched (protected) topological phase by directly constructing the corresponding symmetry transformations, which can be considered as a generalization of the Bogoliubov transformation.



قيم البحث

اقرأ أيضاً

149 - Qing-Rui Wang , Meng Cheng 2021
We propose a general construction of commuting projector lattice models for 2D and 3D topological phases enriched by U(1) symmetry, with finite-dimensional Hilbert space per site. The construction starts from a commuting projector model of the topolo gical phase and decorates U(1) charges to the state space in a consistent manner. We show that all 2D U(1) symmetry-enriched topological phases which allow gapped boundary without breaking symmetry, can be realized through our construction. We also construct a large class of 3D topological phases with U(1) symmetry fractionalized on particles or loop excitations.
138 - Shenghan Jiang , Ying Ran 2016
We present systematic constructions of tensor-network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries. From the classification point of view, our results show that in spatial dimensi ons $d=1,2,3$, the cohomological bosonic SPT phases protected by a general symmetry group $SG$ involving onsite and spatial symmetries are classified by the cohomology group $H^{d+1}(SG,U(1))$, in which both the time-reversal symmetry and mirror reflection symmetries should be treated as anti-unitary operations. In addition, for every SPT phase protected by a discrete symmetry group and some SPT phases protected by continous symmetry groups, generic tensor-network wavefunctions can be constructed which would be useful for the purpose of variational numerical simulations. As a by-product, our results demonstrate a generic connection between rather conventional symmetry enriched topological phases and SPT phases via an anyon condensation mechanism.
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation. Mathematically, cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear basis, known as the resolutions of the group. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinite to finite. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.
The classification and lattice model construction of symmetry protected topological (SPT) phases in interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed point wave function construction of fermio nic SPT (FSPT) states for generic fermionic symmetry group $G_f=mathbb{Z}_2^f times_{omega_2} G_b$ which is a central extension of bosonic symmetry group $G_b$ (may contain time reversal symmetry) by the fermion parity symmetry group $mathbb{Z}_2^f = {1,P_f}$. Our construction is based on the concept of equivalence class of finite depth fermionic symmetric local unitary (FSLU) transformations and decorating symmetry domain wall picture, subjected to certain obstructions. We will also discuss the systematical construction and classification of boundary anomalous SPT (ASPT) states which leads to a trivialization of the corresponding bulk FSPT states. Thus, we conjecture that the obstruction-free and trivialization-free constructions naturally lead to a classification of FSPT phases. Each fixed-point wave function admits an exactly solvable commuting-projector Hamiltonian. We believe that our classification scheme can be generalized to point/space group symmetry as well as continuum Lie group symmetry.
We construct fixed-point wave functions and exactly solvable commuting-projector Hamiltonians for a large class of bosonic symmetry-enriched topological (SET) phases, based on the concept of equivalent classes of symmetric local unitary transformatio ns. We argue that for onsite unitary symmetries, our construction realizes all SETs free of anomaly, as long as the underlying topological order itself can be realized with a commuting-projector Hamiltonian. We further extend the construction to anti-unitary symmetries (e.g. time-reversal symmetry), mirror-reflection symmetries, and to anomalous SETs on the surface of three-dimensional symmetry-protected topological phases. Mathematically, our construction naturally leads to a generalization of group extensions of unitary fusion categories to anti-unitary symmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا