ﻻ يوجد ملخص باللغة العربية
We introduce a semi-parametric model for the primary mass distribution of binary black holes (BBHs) observed with gravitational waves (GWs) that applies a cubic-spline perturbation to a power law. We apply this model to the 46 BBHs included in the second gravitational wave transient catalog (GWTC-2). The spline perturbation model recovers a consistent primary mass distribution with previous results, corroborating the existence of a peak at $35,M_odot$ ($>97%$ credibility) found with the textsc{Powerlaw+Peak} model. The peak could be the result pulsational pair-instability supernovae (PPISNe). The spline perturbation model finds potential signs of additional features in the primary mass distribution at lower masses similar to those previously reported by Tiwari and Fairhurst (2021). However, with fluctuations due to small number statistics, the simpler textsc{Powerlaw+Peak} and textsc{BrokenPowerlaw} models are both still perfectly consistent with observations. Our semi-parametric approach serves as a way to bridge the gap between parametric and non-parametric models to more accurately measure the BBH mass distribution. With larger catalogs we will be able to use this model to resolve possible additional features that could be used to perform cosmological measurements, and will build on our understanding of BBH formation, stellar evolution and nuclear astrophysics.
We derive the first constraints on the time delay distribution of binary black hole (BBH) mergers using the LIGO-Virgo Gravitational-Wave Transient Catalog GWTC-2. Assuming that the progenitor formation rate follows the star formation rate (SFR), the
We study the evolution of the binary black hole (BBH) mass distribution across cosmic time. The second gravitational-wave transient catalog (GWTC-2) from LIGO/Virgo contains BBH events out to redshifts $z sim 1$, with component masses in the range $s
We use the gravitational wave signals from binary black hole merger events observed by LIGO and Virgo to reconstruct the underlying mass and spin distributions of the population of merging black holes. We reconstruct the population using the mixture
Many proposed scenarios for black hole (BH) mergers involve a tertiary companion that induces von Zeipel-Lidov-Kozai (ZLK) eccentricity cycles in the inner binary. An attractive feature of such mechanisms is the enhanced merger probability when the o
Theoretical models and observations suggest that primordial Stellar Black Holes (Pop-III-BHs) were prolifically formed in HMXBs, which are powerful relativistic jet sources of synchrotron radiation called Microquasars (MQs). Large populations of BH