ترغب بنشر مسار تعليمي؟ اضغط هنا

The Emergence of Structure in the Binary Black Hole Mass Distribution

76   0   0.0 ( 0 )
 نشر من قبل Vaibhav Tiwari
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the gravitational wave signals from binary black hole merger events observed by LIGO and Virgo to reconstruct the underlying mass and spin distributions of the population of merging black holes. We reconstruct the population using the mixture model framework VAMANA (Tiwari 2020) using observations in GWTC-2 occurring during the first two observing runs and the first half of the third run (O1, O2, and O3a). Our analysis identifies a structure in the chirp mass distribution of the observed population. Specifically, we identify peaks in the chirp mass distribution at 8, 14, 26, and 45 M and a complementary structure in the component mass distribution with an excess of black holes at masses of 9, 16, 30 and 57 M_. Intriguingly, for both the distributions, the location of subsequent peaks are separated by a factor of around two and there is a lack of mergers with chirp masses of 10-12 M. The appearance of multiple peaks is a feature of a hierarchical merger scenario when, due to a gap in the black-hole mass spectrum, a pile-up occurs at the first peak followed by mergers of lower mass black-holes to hierarchically produce higher mass black-holes. However, cross-generation merger peaks and observations with high spins are also predicted to occur in such a scenario that we are not currently observing. The results presented are limited in measurement accuracy due to small numbers of observations but if corroborated by future gravitational wave observations these features have far-reaching implications.

قيم البحث

اقرأ أيضاً

87 - Yubo Su , Bin Liu , Dong Lai 2021
Many proposed scenarios for black hole (BH) mergers involve a tertiary companion that induces von Zeipel-Lidov-Kozai (ZLK) eccentricity cycles in the inner binary. An attractive feature of such mechanisms is the enhanced merger probability when the o ctupole-order effects, also known as the eccentric Kozai mechanism, are important. This can be the case when the tertiary is of comparable mass to the binary components. Since the octupole strength [$propto (1-q)/(1+q)$] increases with decreasing binary mass ratio $q$, such ZLK-induced mergers favor binaries with smaller mass ratios. We use a combination of numerical and analytical approaches to fully characterize the octupole-enhanced binary BH mergers and provide analytical criteria for efficiently calculating the strength of this enhancement. We show that for hierarchical triples with semi-major axis ratio $a/a_{rm out}gtrsim 0.01$-$0.02$, the binary merger fraction can increase by a large factor (up to $sim 20$) as $q$ decreases from unity to $0.2$. The resulting mass ratio distribution for merging binary BHs produced in this scenario is in tension with the observed distribution obtained by the LIGO/VIRGO collaboration, although significant uncertainties remain about the initial distribution of binary BH masses and mass ratios.
We simulate the star cluster, made of stars in the main sequence and different black hole (BH) remnants, around SgrA* at the center of the Milky Way galaxy. Tracking stellar evolution, we find the BH remnant masses and construct the BH mass function. We sample 4 BH species and consider the impact of the mass-function in the dynamical evolution of system. Starting from an initial 6 dimensional family of parameters and using an MCMC approach, we find the best fits to various parameters of model by directly comparing the results of the simulations after $t = 10.5$ Gyrs with current observations of the stellar surface density, stellar mass profile and the mass of SgrA*. Using these parameters, we study the dynamical evolution of system in detail. We also explore the mass-growth of SgrA* due to tidally disrupted stars and swallowed BHs. We show that the consumed mass is dominated for the BH component with larger initial normalization as given by the BH mass-function. Assuming that about 10% of the tidally disrupted stars contribute in the growth of SgrA* mass, stars make up the second dominant effect in enhancing the mass of SgrA*. We consider the detectability of the GW signal from inspiralling stellar mass BHs around SgrA* with LISA. Computing the fraction of the lifetime of every BH species in the LISA band, with signal to noise ratio $gtrsim 8$, to their entire lifetime, and rescaling this number with the total number of BHs in the system, we find that the total expected rate of inspirals per Milky-Way sized galaxy per year is $10^{-5}$. Quite interestingly, the rate is dominated for the BH component with larger initial normalization as dictated by the BH mass-function. We interpret it as the second signature of the BH mass-function.
73 - Federico Garcia 2021
We aim to study the progenitor properties and expected rates of the two lowest-mass binary black hole (BH) mergers, GW 151226 and GW 170608, detected within the first two Advanced LIGO-Virgo runs, in the context of the isolated binary-evolution scena rio. We use the public MESA code, which we adapted to include BH formation and unstable mass transfer developed during a common-envelope (CE) phase. Using more than 60000 binary simulations, we explore a wide parameter space for initial stellar masses, separations, metallicities, and mass-transfer efficiencies. We obtain the expected distributions for the chirp mass, mass ratio, and merger time delay by accounting for the initial stellar binary distributions. Our simulations show that, while the progenitors we obtain are compatible over the entire range of explored metallicities, they show a strong dependence on the initial masses of the stars, according to stellar winds. All the progenitors follow a similar evolutionary path, starting from binaries with initial separations in the $30-200~R_odot$ range, experiencing a stable mass transfer interaction before the formation of the first BH, and a second unstable mass-transfer episode leading to a CE ejection that occurs either when the secondary star crosses the Hertzsprung gap or when it is burning He in its core. The CE phase plays a fundamental role in the considered low-mass range: only progenitors experiencing such an unstable mass-transfer phase are able to merge in less than a Hubble time. We find integrated merger-rate densities in the range $0.2-5.0~{rm yr}^{-1}~{rm Gpc}^{-3}$ in the local Universe for the highest mass-transfer efficiencies explored. The highest rate densities lead to detection rates of $1.2-3.3~{rm yr}^{-1}$, being compatible with the observed rates. A high CE-efficiency scenario with $alpha_{rm CE}=2.0$ is favored when comparing with observations. ABRIDGED.
We present intermediate resolution spectroscopy of the optical counterpart to the black hole X-ray transient MAXI J1820+070 (=ASASSN-18ey) obtained with the OSIRIS spectrograph on the 10.4-m Gran Telescopio Canarias. The observations were performed w ith the source close to the quiescent state and before the onset of renewed activity in August 2019. We make use of these data and K-type dwarf templates taken with the same instrumental configuration to measure the projected rotational velocity of the donor star. We find $v_{rot} sin i = 84 pm 5$ km s$^{-1}$ ($1!-!sigma$), which implies a donor to black-hole mass ratio $q = {M_2}/{M_1} = 0.072 pm 0.012$ for the case of a tidally locked and Roche-lobe filling donor star. The derived dynamical masses for the stellar components are $M_1 = (5.95 pm 0.22)sin ^{-3}i$ $M_odot$ and $M_2 = (0.43 pm 0.08) sin^{-3}i$ $M_odot$. The use of $q$, combined with estimates of the accretion disk size at the time of the optical spectroscopy, allows us to revise our previous orbital inclination constraints to $66^{circ} < i < 81^{circ}$. These values lead to 95% confidence level limits on the masses of $5.73 <M_1(M_odot) < 8.34$ and $0.28 < M_2(M_odot) < 0.77$. Adopting instead the $63 pm 3^{circ}$ orientation angle of the radio jet as the binary inclination leads to $M_1 = 8.48^{+0.79}_{-0.72} M_odot$ and $M_2 = 0.61^{+0.13}_{-0.12} M_odot$ ($1!-!sigma$).
The optical counterpart of the black-hole soft X-ray transient Nova Muscae 1991 has brightened by $Delta{V}approx0.8$ mag since its return to quiescence 23 years ago. We present the first clear evidence that the brightening of soft X-ray transients i n quiescence occurs at a nearly linear rate. This discovery, and our precise determination of the disk component of emission obtained using our $simultaneous$ photometric and spectroscopic data, have allowed us to identify and accurately model archival ellipsoidal light curves of the highest quality. The simultaneity, and the strong constraint it provides on the component of disk emission, is a key element of our work. Based on our analysis of the light curves, and our earlier measurements of the mass function and mass ratio, we have obtained for Nova Muscae 1991 the first accurate estimates of its systemic inclination $i=43.2^{+2.1}_{-2.7}$ deg, and black hole mass $M=11.0^{+2.1}_{-1.4} M_odot$. Based on our determination of the radius of the secondary, we estimate the distance to be $D=4.95^{+0.69}_{-0.65}$ kpc. We discuss the implications of our work for future dynamical studies of black-hole soft X-ray transients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا