ﻻ يوجد ملخص باللغة العربية
Previous abstractive methods apply sequence-to-sequence structures to generate summary without a module to assist the system to detect vital mentions and relationships within a document. To address this problem, we utilize semantic graph to boost the generation performance. Firstly, we extract important entities from each document and then establish a graph inspired by the idea of distant supervision citep{mintz-etal-2009-distant}. Then, we combine a Bi-LSTM with a graph encoder to obtain the representation of each graph node. A novel neural decoder is presented to leverage the information of such entity graphs. Automatic and human evaluations show the effectiveness of our technique.
Abstractive summarization typically relies on large collections of paired articles and summaries. However, in many cases, parallel data is scarce and costly to obtain. We develop an abstractive summarization system that relies only on large collectio
The progress in Query-focused Multi-Document Summarization (QMDS) has been limited by the lack of sufficient largescale high-quality training datasets. We present two QMDS training datasets, which we construct using two data augmentation methods: (1)
Abstractive document summarization is usually modeled as a sequence-to-sequence (Seq2Seq) learning problem. Unfortunately, training large Seq2Seq based summarization models on limited supervised summarization data is challenging. This paper presents
Current abstractive summarization systems outperform their extractive counterparts, but their widespread adoption is inhibited by the inherent lack of interpretability. To achieve the best of both worlds, we propose EASE, an extractive-abstractive fr
In this paper, we aim to improve abstractive dialogue summarization quality and, at the same time, enable granularity control. Our model has two primary components and stages: 1) a two-stage generation strategy that generates a preliminary summary sk