ﻻ يوجد ملخص باللغة العربية
Given a semisimple group over a complete non-Archimedean field, it is well known that techniques from non-Archimedean analytic geometry provide an embedding of the corresponding Bruhat-Tits builidng into the analytic space associated to the group; by composing the embedding with maps to suitable analytic proper spaces, this eventually leads to various compactifications of the building. In the present paper, we give an intrinsic characterization of this embedding.
Given a split semisimple group over a local field, we consider the maximal Satake-Berkovich compactification of the corresponding Euclidean building. We prove that it can be equivariantly identified with the compactification which we get by embedding
In cite{FGLNP}, Fox, Gromov, Lafforgue, Naor and Pach, in a respond to a question of Gromov cite{G}, constructed bounded degree geometric expanders, namely, simplical complexes having the affine overlapping property. Their explicit constructions are
Let $(W,S)$ be a finite Weyl group and let $win W$. It is widely appreciated that the descent set D(w)={sin S | l(ws)<l(w)} determines a very large and important chapter in the study of Coxeter groups. In this paper we generalize some of those result
We construct and study a scheme theoretical version of the Tits vectorial building, relate it to filtrations on fiber functors, and use them to clarify various constructions pertaining to Bruhat-Tits buildings, for which we also provide a Tannakian description.
We present a number of examples to illustrate the use of small quotient dessins as substitutes for their often much larger and more complicated Galois (minimal regular) covers. In doing so we employ several useful group-theoretic techniques, such as