ترغب بنشر مسار تعليمي؟ اضغط هنا

Descent Systems for Bruhat Posets

187   0   0.0 ( 0 )
 نشر من قبل Lex Renner
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Lex E. Renner




اسأل ChatGPT حول البحث

Let $(W,S)$ be a finite Weyl group and let $win W$. It is widely appreciated that the descent set D(w)={sin S | l(ws)<l(w)} determines a very large and important chapter in the study of Coxeter groups. In this paper we generalize some of those results to the situation of the Bruhat poset $W^J$ where $Jsubseteq S$. Our main results here include the identification of a certain subset $S^Jsubseteq W^J$ that convincingly plays the role of $Ssubseteq W$, at least from the point of view of descent sets and related geometry. The point here is to use this resulting {em descent system} $(W^J,S^J)$ to explicitly encode some of the geometry and combinatorics that is intrinsic to the poset $W^J$. In particular, we arrive at the notion of an {em augmented poset}, and we identify the {em combinatorially smooth} subsets $Jsubseteq S$ that have special geometric significance in terms of a certain corresponding torus embedding $X(J)$. The theory of $mathscr{J}$-irreducible monoids provides an essential tool in arriving at our main results.



قيم البحث

اقرأ أيضاً

Given a semisimple group over a complete non-Archimedean field, it is well known that techniques from non-Archimedean analytic geometry provide an embedding of the corresponding Bruhat-Tits builidng into the analytic space associated to the group; by composing the embedding with maps to suitable analytic proper spaces, this eventually leads to various compactifications of the building. In the present paper, we give an intrinsic characterization of this embedding.
307 - Loic Foissy 2012
A plane poset is a finite set with two partial orders, satisfying a certain incompatibility condition. The set PP of isoclasses of plane posets owns two products, and an infinitesimal Hopf algebra structure is defined on the vector space H_PP generat ed by PP, using the notion of biideals of plane posets. We here define a partial order on PP, making it isomorphic to the set of partitions with the weak Bruhat order. We prove that this order is compatible with both products of PP; moreover, it encodes a non degenerate Hopf pairing on the infinitesimal Hopf algebra H_PP.
We prove descent theorems for semiorthogonal decompositions using techniques from derived algebraic geometry. Our methods allow us to capture more general filtrations of derived categories and even marked filtrations, where one descends not only admissible subcategories but also preferred objects.
A theorem of N. Katz cite{Ka} p.45, states that an irreducible differential operator $L$ over a suitable differential field $k$, which has an isotypical decomposition over the algebraic closure of $k$, is a tensor product $L=Motimes_k N$ of an absolu tely irreducible operator $M$ over $k$ and an irreducible operator $N$ over $k$ having a finite differential Galois group. Using the existence of the tensor decomposition $L=Motimes N$, an algorithm is given in cite{C-W}, which computes an absolutely irreducible factor $F$ of $L$ over a finite extension of $k$. Here, an algorithmic approach to finding $M$ and $N$ is given, based on the knowledge of $F$. This involves a subtle descent problem for differential operators which can be solved for explicit differential fields $k$ which are $C_1$-fields.
We give necessary and sufficient conditions for a cdh sheaf to satisfy Milnor excision, following ideas of Bhatt and Mathew. Along the way, we show that the cdh infinity-topos of a quasi-compact quasi-separated scheme of finite valuative dimension is hypercomplete, extending a theorem of Voevodsky to nonnoetherian schemes. As an application, we show that if E is a motivic spectrum over a field k which is n-torsion for some n invertible in k, then the cohomology theory on k-schemes defined by E satisfies Milnor excision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا