ﻻ يوجد ملخص باللغة العربية
We consider a geodesic billiard system consisting of a complete Riemannian manifold and an obstacle submanifold with boundary at which the trajectories of the geodesic flow experience specular reflections. We show that if the geodesic billiard system is hyperbolic on its trapped set and the latter is compact and non-grazing the techniques for open hyperbolic systems developed by Dyatlov and Guillarmou can be applied to a smooth model for the discontinuous flow defined by the non-grazing billiard trajectories. This allows us to obtain a meromorphic resolvent for the generator of the billiard flow. As an application we prove a meromorphic continuation of weighted zeta functions together with explicit residue formulae. In particular, our results apply to scattering by convex obstacles in the Euclidean plane.
We consider the problem of finding the resonances of the Laplacian on truncated Riemannian cones. In a similar fashion to Cheeger--Taylor, we construct the resolvent and scattering matrix for the Laplacian on cones and truncated cones. Following Stef
It is shown that elastic resonance scattering of light by a finite-size obstacle with weak dissipation is analogous to quantum scattering by a potential with quasi-discrete levels and exhibits Fano resonances. Localized plasmons (polaritons), exited
We consider two integrals over $xin [0,1]$ involving products of the function $zeta_1(a,x)equiv zeta(a,x)-x^{-a}$, where $zeta(a,x)$ is the Hurwitz zeta function, given by $$int_0^1zeta_1(a,x)zeta_1(b,x),dxquadmbox{and}quad int_0^1zeta_1(a,x)zeta_1(b
We define generalised zeta functions associated to indefinite quadratic forms of signature (g-1,1) -- and more generally, to complex symmetric matrices whose imaginary part has signature (g-1,1) -- and we investigate their properties. These indefinit
We consider a family of spherically symmetric, asymptotically Euclidean manifolds with two trapped sets, one which is unstable and one which is semi-stable. The phase space structure is that of an inflection transmission set. We prove a sharp local s