ﻻ يوجد ملخص باللغة العربية
We consider the problem of finding the resonances of the Laplacian on truncated Riemannian cones. In a similar fashion to Cheeger--Taylor, we construct the resolvent and scattering matrix for the Laplacian on cones and truncated cones. Following Stefanov, we show that the resonances on the truncated cone are distributed asymptotically as Ar^n + o(r^n), where A is an explicit coefficient. We also conclude that the Laplacian on a non-truncated cone has no resonances away from zero.
A subject of recent interest in inverse problems is whether a corner must diffract fixed frequency waves. We generalize this question somewhat and study cones $[0,infty)times Y$ which do not diffract high frequency waves. We prove that if $Y$ is anal
We consider a geodesic billiard system consisting of a complete Riemannian manifold and an obstacle submanifold with boundary at which the trajectories of the geodesic flow experience specular reflections. We show that if the geodesic billiard system
We consider the wave equation on a product cone and find a joint asymptotic expansion for forward solutions near null and future infinities. The rates of decay seen in the expansion are the resonances of a hyperbolic cone on the northern cap of the c
We prove on the 2D sphere and on the 2D torus the Lieb-Thirring inequalities with improved constants for orthonormal families of scalar and vector functions.
We consider a free boundary problem on cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. We show that when the cone is three-dimensional and c is large enough, the free boundary avoid