ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconstructing solar irradiance from historical Ca II K observations. I. Method and its validation

168   0   0.0 ( 0 )
 نشر من قبل Theodosios Chatzistergos
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge of solar irradiance variability is critical to Earths climate models and understanding the solar influence on Earths climate. Direct solar irradiance measurements are only available since 1978. Reconstructions of past variability typically rely on sunspot data. These provide only indirect information on the facular and network regions, which are decisive contributors to irradiance variability on timescales of the solar cycle and longer. Our ultimate goal is to reconstruct past solar irradiance variations using historical full-disc Ca II K observations to describe the facular contribution independently of sunspot observations. Here, we develop the method and test it extensively by using modern CCD-based Ca II K observations and carry out initial tests on two photographic archives. We employ carefully reduced and calibrated Ca II K images from 13 datasets, such as those from the Meudon, Mt Wilson, and Rome observatories. We convert them to unsigned magnetograms and then use them as input to the adapted SATIRE model to reconstruct TSI variations over the period 1978-2019, for which direct irradiance measurements are available. The reconstructed TSI from the analysed Ca II K archives agrees well with direct TSI measurements and existing reconstructions. The model also returns good results on data taken with different bandpasses and images with low spatial resolution. Historical Ca II K archives suffer from numerous inconsistencies, but we show that these archives can still be used to reconstruct TSI with reasonable accuracy provided the observations are accurately processed. By using the unsigned magnetograms of the Sun reconstructed from high-quality Ca II K observations as input into the SATIRE model, we can reconstruct solar irradiance variations nearly as accurately as from directly recorded magnetograms.

قيم البحث

اقرأ أيضاً

Context. There is no consensus on the amplitude of the historical solar forcing. The estimated magnitude of the total solar irradiance difference between Maunder minimum and present time ranges from 0.1 to 6 W/m2 making uncertain the simulation of th e past and future climate. One reason for this disagreement is the applied evolution of the quiet Sun brightness in the solar irradiance reconstruction models. This work addresses the role of the quiet Sun model choice and updated solar magnetic activity proxies on the solar forcing reconstruction. Aims. We aim to establish a plausible range of the solar irradiance variability on decadal to millennial time scales. Methods. The spectral solar irradiance (SSI) is calculated as a weighted sum of the contributions from sunspot umbra/penumbra, fac- ulae and quiet Sun, which are pre-calculated with the spectral synthesis code NESSY. We introduce activity belts of the contributions from sunspots and faculae and a new structure model for the quietest state of the Sun. We assume that the brightness of the quiet Sun varies in time proportionally to the secular (22-year smoothed) variation of the solar modulation potential. Results. A new reconstruction of the TSI and SSI covering the period 6000 BCE - 2015 CE is presented. The model simulates solar irradiance variability during the satellite era well. The TSI change between the Maunder and recent minima ranges between 3.7 and 4.5 W/m2 depending on the applied solar modulation potential. The implementation of a new quietest Sun model reduces, by approximately a factor of two, the relative solar forcing compared to the largest previous estimation, while the application of updated solar modulation potential increases the forcing difference between Maunder minimum and the present by 25-40 %.
We address the importance of historical full disc Ca II K spectroheliograms for solar activity and irradiance reconstruction studies. We review our work on processing such data to enable them to be used in irradiance reconstructions. We also present our preliminary estimates of the plage areas from five of the longest available historical Ca II K archives.
Context. Systematic observations of magnetic field strength and polarity in sunspots began at Mount Wilson Observatory (MWO), USA in early 1917. Except for a few brief interruptions, this historical dataset continues till present. Aims. The sunspot f ield strength and polarity observations are critical in our project of reconstructing the solar magnetic field over the last hundred years. Here we provide a detailed description of the newly digitized dataset of drawings of sunspot magnetic field observations. Methods. The digitization of MWO drawings is based on a software package develope d by us. It includes a semi-automatic selection of solar limbs and other features of the drawing, and a manual entry of the time of observations, the measured field strength and other notes hand-written on each drawing. The data are preserved in a MySQL database. Results. We provide a brief history of the project and describe the results from digitizing this historical dataset. We also provide a summary of the final dataset, and describe its known limitations. Finally, we compare the sunspot magnetic field measurements with other instruments, and demonstrate that, if needed, the dataset could be continued using modern observations such as, for example, Vector Stokes Magnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) platform.
Total solar irradiance (TSI) has been monitored from space since 1978. The measurements show a prominent variability in phase with the solar cycle, as well as fluctuations on timescales shorter than a few days. However, the measurements were done by multiple and usually relatively short-lived missions making the possible long-term trend in the TSI highly uncertain. While the variability in the UV irradiance is clearly in-phase with the solar cycle, the phase of the variability in the visible range has been debated. In this paper, we aim at getting an insight into the long-term trend of TSI since 1996 and the phase of the solar irradiance variations in the visible part of the spectrum. We use independent ground-based full-disc photometric observations in Ca~II~K and continuum from the Rome and San Fernando observatories to compute the TSI since 1996. We follow the empirical San Fernando approach based on the photometric sum index. We find a weak declining trend in the TSI of -7.8$^{+4.9}_{-0.8}times10^{-3}$ Wm$^{-2}$y$^{-1}$ between the 1996 and 2008 activity minima, while between 2008 and 2019 the reconstructed TSI shows no trend to a marginally decreasing (but statistically insignificant) trend of -0.1$^{+0.25}_{-0.02}times10^{-3}$ Wm$^{-2}$y$^{-1}$. The reference TSI series used for the reconstruction does not significantly affect the determined trend. The variation in the blue continuum (409.2 nm) is rather flat, while the variation in the red continuum (607.1 nm) is marginally in anti-phase, although this result is extremely sensitive to the accurate assessment of the quiet Sun level in the images. These results provide further insights into the long-term variation of the total solar irradiance. The amplitude of the variations in the visible is below the uncertainties of the processing, which prevents an assessment of the phase of the variations.
We reassess the relationship between the photospheric magnetic field strength and the Ca II K intensity for a variety of surface features as a function of the position on the disc and the solar activity level. This relationship can be used to recover the unsigned photospheric magnetic field from images recorded in the core of Ca II K line. We have analysed 131 pairs of high-quality, full-disc, near-co-temporal observations from SDO/HMI and Rome/PSPT spanning half a solar cycle. To analytically describe the observationally-determined relation, we considered three different functions: a power law with an offset, a logarithmic function, and a power law function of the logarithm of the magnetic flux density. We used the obtained relations to reconstruct maps of the line-of-sight component of the unsigned magnetic field (unsigned magnetograms) from Ca II K observations, which were then compared to the original magnetograms. We find that both power-law functions represent the data well, while the logarithmic function is good only for quiet periods. We see no significant variation over the solar cycle or over the disc in the derived fit parameters, independently of the function used. We find that errors in the independent variable, usually not accounted for, introduce attenuation bias. To address this, we binned the data with respect to the magnetic field strength and Ca II K contrast separately and derived the relation for the bisector of the two binned curves. The reconstructed unsigned magnetograms show good agreement with the original ones. RMS differences are less than 90 G. The results were unaffected by the stray-light correction of the SDO/HMI and Rome/PSPT data. Our results imply that Ca~II~K observations, accurately processed and calibrated, can be used to reconstruct unsigned magnetograms by using the relations derived in our study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا