ﻻ يوجد ملخص باللغة العربية
Context. There is no consensus on the amplitude of the historical solar forcing. The estimated magnitude of the total solar irradiance difference between Maunder minimum and present time ranges from 0.1 to 6 W/m2 making uncertain the simulation of the past and future climate. One reason for this disagreement is the applied evolution of the quiet Sun brightness in the solar irradiance reconstruction models. This work addresses the role of the quiet Sun model choice and updated solar magnetic activity proxies on the solar forcing reconstruction. Aims. We aim to establish a plausible range of the solar irradiance variability on decadal to millennial time scales. Methods. The spectral solar irradiance (SSI) is calculated as a weighted sum of the contributions from sunspot umbra/penumbra, fac- ulae and quiet Sun, which are pre-calculated with the spectral synthesis code NESSY. We introduce activity belts of the contributions from sunspots and faculae and a new structure model for the quietest state of the Sun. We assume that the brightness of the quiet Sun varies in time proportionally to the secular (22-year smoothed) variation of the solar modulation potential. Results. A new reconstruction of the TSI and SSI covering the period 6000 BCE - 2015 CE is presented. The model simulates solar irradiance variability during the satellite era well. The TSI change between the Maunder and recent minima ranges between 3.7 and 4.5 W/m2 depending on the applied solar modulation potential. The implementation of a new quietest Sun model reduces, by approximately a factor of two, the relative solar forcing compared to the largest previous estimation, while the application of updated solar modulation potential increases the forcing difference between Maunder minimum and the present by 25-40 %.
Reliable historical records of total solar irradiance (TSI) are needed for climate change attribution and research to assess the extent to which long-term variations in the Suns radiant energy incident on the Earth may exacerbate (or mitigate) the mo
Knowledge of solar irradiance variability is critical to Earths climate models and understanding the solar influence on Earths climate. Direct solar irradiance measurements are only available since 1978. Reconstructions of past variability typically
One of the important open questions in solar irradiance studies is whether long-term variability (i.e. on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e. days) using solar proxies as
The Earths primary source of energy is the radiant energy generated by the Sun, which is referred to as solar irradiance, or total solar irradiance (TSI) when all of the radiation is measured. A minor change in the solar irradiance can have a signifi
Total solar irradiance (TSI) has been monitored from space since 1978. The measurements show a prominent variability in phase with the solar cycle, as well as fluctuations on timescales shorter than a few days. However, the measurements were done by